
Wollabot Manual

Christian Joergensen

Wollabot Manual
by Christian Joergensen

Version 0.3.x Edition
Published 2003
Copyright © 2003 Christian Joergensen

A throughful introduction on how to use Wollabot covering from installation and configuration to writing your own
modules

Table of Contents
Credits...i

1. Installation ...1

1.1. Requirements..1
1.2. Download and unpacking...1

2. Configuration ..2

2.1. The config file...2
2.1.1. ’main’ configuration category..2
2.1.2. ’modules’ configuration category..3
2.1.3. ’channel’ configuration category...3

2.2. Other configuration options (advanced users and developers)...3

3. Modules..4

3.1. Short introduction on how modules are structured..4
3.2. API introduction...4
3.3. API reference..5

bind_prefix...5
bind_query...6
bind_all..7
bind_notice..8
bind_chan...8
bind_onconnect..9
bind_type...10
bind_timer..12
send_raw..13
send_privmsg...13
send_ctcp...14
send_action..14
send_notice..15
is_op...16
is_voice..17
is_on_channel..17
mode..18
kick ..19
change_nick...19
topic...20
join ...20
invite ..21

A. RFC 1459: Internet Relay Chat Protocol...23

B. Client-To-Client Protocol...82

iii

List of Tables
3-1. Wollabot message types...10

List of Examples
3-1. A greet function...5
3-1. A kick function..6
3-1. Log module for raw IRC input logging...7
3-1. On join message...8
3-1. Repeat module for a single channel...9
3-1. Authenticating with Q...10
3-1. Binding to QUIT and PART messages using bind_type...11
3-2. Binding to everything except nickchanges and KICK messages using bind_type..11
3-1. Printing the time every five minutes..12
3-1. Sending a raw message..13
3-1. Send a message using the send_privmsg method..14
3-1. Find out IRC client version from user ’foobar’...14
3-1. Getting the bot to indicate it’s strong feelings using send_action...15
3-1. Making an on-join message using bind_type and send_notice...16
3-1. Ask for ops if the bot doesn’t have..17
3-1. Ask for voice if the bot doesn’t have...17
3-1. Making the bot join a channel if not on it..18
3-1. Op a user..18
3-1. Kick stupiduser from a channel...19
3-1. Changing the bots nick..20
3-1. Setting the topic...20
3-1. Joining a channel...21
3-1. Inviting a user to a channel..21

iv

Credits

Over the time, some people has contributed Wollabot. Here I’ll try to list them:

• Thomas Johansson

• Dan Kuykendall

There’s a couple of other people i would like to thank:

• Mirco "MEEBEY" Bauer (Author of SmartIRC)

• Dietrich Ayala (Author of NuSOAP)

i

Chapter 1. Installation

In this chapter you will learn how to download and install your Wollabot correctly.

1.1. Requirements

To run a Wollabot nothing more than a CGI installation of PHP4 newer than 4.2.0 is needed. Refer to the PHP
Manual (http://www.php.net/manual/en/install.commandline.php) for information on how to make a CGI installation
of PHP.

Note: Wollabot is NOT supposed to run through Apache or any other webserver. Wollabot is a standalone
application written in PHP using the commandline interpreter.

1.2. Download and unpacking

First you must get your own copy of Wollabot available on the Wollabot website: http://wollabot.sourceforge.net.
Wollabot comes in three different compressed types of packages: tar.gz, tar.bz2 and .zip. Choose one which fits you
set of decompress programs.

1

Chapter 2. Configuration

This chapter covers how to configure your Wollabot.

2.1. The config file

The configuration of Wollabot takes place using a simple configuration file. The file is calledwollabot.ini and is
placed in the root-directory of your Wollabot installation. Here’s a sample configuration file:

[main]

; IRC preferences
server = "irc.quakenet.org"
port = "6667"
nickname = "wollabot"
username = "w0114"

[modules]

; Base module - DO NOT remove those unless you know what you’re doing
loadmodule = "Wollabot_Base.php"

; User modules - Put your own modules here
loadmodule = "google.php"
loadmodule = "phpfunctions.php"
loadmodule = "nickometer.php";

[channel]

name = "#wollabot"
on_join = "PRIVMSG #wollabot :Hello, I’m a Wollabot\PRIVMSG #wollabot :Visit my website at http://wollabot.sourceforge.net"
key = ""

[channel]

name = "#quux"
on_join = ""
key = "foobar"

The main philosophy behind the configuration file is for it to be mostly self-explanatory. However we will provide
you with an overview here. It consists of configuration categories defined using square brackets ([category]).
Each configuration category has it’s own different configuration properties. These i will go through here:

2

Chapter 2. Configuration

2.1.1. ’main’ configuration category

• server - This is the IRC server the bot should connect to. For QuakeNet it could be ’irc.quakenet.org’.

• port - The port to connect to. Usually ’6667 ’.

• nickname - The nickname of the bot. The name other users on IRC would recognize it as.

• username - If not running some sort of ident server on your connection, this will be the username (eg. the part
before the ’@’ in your ’user@host’ string.

2.1.2. ’modules’ configuration category

• loadmodule - This setting indicates which modules should be loaded. Supply one module for each directive.

2.1.3. ’channel’ configuration category

• name - This is a channel name, which Wollabot will join when connected (eg. ’#wollabot’).

• on_join - A raw IRC message sent after the join. Multiple messages can be specified using ’\’ (backslash) as a
seperator.

• key - This is the password (key) for a given channel. Used if the channel has ’+k’ channel mode.

2.2. Other configuration options (advanced users and
developers)

If you’re really in to setting up Wollabot as you really like it, fire up your editor and take a look at the first parts of
lib/wollabot.php . Here there’s a lot of switches you can chance and such.

3

Chapter 3. Modules

In this chapter you will learn how to write your own modules.

3.1. Short introduction on how modules are structured

With the new 0.3.0 release a whole new way of building modules have been made. With much more freedom you do
not have any boundaries anymore. From a technical perspective, a module is a class
(http://dk2.php.net/manual/en/language.oop.php#keyword.class) inherited from a base class called Wollabot_Module
which contains the tools for binding specific methods to IRC input and some standard methods for interaction the
other way around. At last you tell Wollabot to register your class and put your local bindings into the global binding
repository for execution. In order to understand what the different methods does - we have put up a API reference in
the next section.

3.2. API introduction

In order to create a module you must start by defining your module class and tell Wollabot to register it. This is done
like this:

class MyModule extends Wollabot_Module {

function MyModule () {
// Constructor for your module

}

}

$wollabot->register_module("MyModule");

This is pretty much the most simple module you can make. It does completely nothing. In order to add some
functionality, we need to use a bind-method. We have quite a few bind-methods, but in our example we will use
bind_prefix() for the sake of simplicity. The methods bind_prefix() binds a user-defined method in the current class
to a given prefix in a IRC message (either channel, query or notice). It takes two arguments: method and prefix. Let
us start out by making a greet function, that greet everyone who writes ’hello’ in your channel.

class MyModule extends Wollabot_Module {

function MyModule () {
$this->bind_prefix(’say_hello’, ’hello’);

}

function say_hello ($data) {
$this->send_privmsg($data[’channel’], "Hello ".$data[’nick’]);

4

Chapter 3. Modules

}

}

$wollabot->register_module("MyModule");

Here we see how the method say_hello() take exactly one argument, being an array of data from the IRC message
that triggered it. The data array consists of the following elements:

$data[’from’] => The user who sent the message (in the form of nick!user@host
$data[’nick’] => The nickname of the user who sent the message
$data[’ident’] => The ident of the user who sent the message (username)
$data[’host’] => The host of the user who sent the message
$data[’channel’] => The channel in which the message was written (if given)
$data[’message’] => The actual message
$data[’message_exploded’] => The actual mesasge exploded by space
$data[’type’] => The message type - refer to WOLLABOT_TYPE_* constants
$data[’raw’] => The raw message directly from socket
$data[’raw_exploded’] => The raw message directly from socket exploded by space

3.3. API reference

Above is a list of all methods available in the module base class.

bind_prefix

Name
bind_prefix — Binds a prefix on a IRC message to a given method

Synopsis

void bind_prefix (string method , string prefix);

Description

When someone writes a message in a channel, notice or query, begginning withprefix , method is called.

5

Chapter 3. Modules

Example 3-1. A greet function

class MyModule extends Wollabot_Module {

function MyModule () {
$this->bind_prefix(’say_hello’, ’hello’);

}

function say_hello ($data) {
$this->send_privmsg($data[’channel’], "Hello ".$data[’nick’]);

}

}

$wollabot->register_module("MyModule");

bind_query

Name
bind_query — Binds a query (private) IRC message to a given method

Synopsis

void bind_query (string method);

Description

When someone writes a private message to the bot in query,method is called. This is great for private commands
such as authentication and things not meant for the public to see.

Example 3-1. A kick function

class MyModule extends Wollabot_Module {

function MyModule () {
$this->bind_query(’do_kick’);

}

function do_kick ($data) {

6

Chapter 3. Modules

if (strtolower($data[’message_exploded’][0]) != ’kick’) return; // end processing
$this->kick($data[’message_exploded’][1],

$data[’message_exploded’][2],
$data[’message_exploded’][3]);

}

}

$wollabot->register_module("MyModule");

bind_all

Name
bind_all — Binds all input to a given method

Synopsis

void bind_all (string method);

Description

When any input on the IRC connection is recieved amethod bound here will be called. This includes MOTD’s,
bans and so on.

Example 3-1. Log module for raw IRC input logging

class MyModule extends Wollabot_Module {

var $fp;

function MyModule () {
$this->bind_all(’do_logging’);
$fp = fopen("/home/bot/logfile.txt", "a");

}

function do_logging ($data) {
fputs($fp, $data[’raw’]);

}

7

Chapter 3. Modules

}

$wollabot->register_module("MyModule");

bind_notice

Name
bind_notice — Binds a notice IRC message to a given method

Synopsis

void bind_notice (string method);

Description

When a notice is recieved (from channel or private)method is called. This works exactly

Example 3-1. On join message

WRITE ME!

bind_chan

Name
bind_chan — Binds an IRC message on a given channel to a given method

Synopsis

void bind_chan (string method , string channel);

8

Chapter 3. Modules

Description

This method binds IRC messages on a givenchannel or all channels settingchannel to all . If you want to bind
your method to multiple channels simply runbind_chan multiple times as well.

Example 3-1. Repeat module for a single channel

class MyModule extends Wollabot_Module {

var $last_message;

function MyModule () {
$this->bind_chan(’check_repeat’, ’#wollabot’);

}

function do_logging ($data) {

if (isset($this->last_message) && $this->last_message == $data[’message’]) {
$this->privmsg($data[’channel’], $data[’message’]);

}

$this->last_message = $data[’message’];

}

}

$wollabot->register_module("MyModule");

bind_onconnect

Name
bind_onconnect — When connected successful a bound method is called

Synopsis

void bind_onconnect (string method);

9

Chapter 3. Modules

Description

When successfully connected to the server (after the numeric reply ’376’ - "end of MOTD")method is called. This
is great for authentication with other bots or network services. Following is an example for QuakeNet’s Q service-bot.

Example 3-1. Authenticating with Q

class MyModule extends Wollabot_Module {

function MyModule () {
$this->bind_onconnect(’q_auth’);

}

function q_auth ($data) {
// You should replace wollabot and password with your own username / password
$this->privmsg("Q@CServe.quakenet.org", "AUTH wollabot password");

}

}

$wollabot->register_module("MyModule");

bind_type

Name
bind_type — Binds a message type from a defined list of types to a method

Synopsis

void bind_type (string method , int type);

Description

This is a very powerful way of binding to an IRC message of a given type. Thetype is made up using bitwise
operators to create your kind of type-specification from a list of types.

Table 3-1. Wollabot message types

10

Chapter 3. Modules

Constant name Value Description

WOLLABOT_TYPE_UNKNOWN 1 All unknown messages not fitting into any other category

WOLLABOT_TYPE_CHANNEL 2 Any channel message (recieved on any channel)

WOLLABOT_TYPE_QUERY 4 A query (private) IRC message

WOLLABOT_TYPE_CTCP 8 A CTCP request

WOLLABOT_TYPE_NOTICE 16 A NOTICE from a channel or in private (check$data[’channel’] to see which one)

WOLLABOT_TYPE_WHO 32 A WHO response

WOLLABOT_TYPE_JOIN 64 When the user or the bot join any channel.

WOLLABOT_TYPE_INVITE 128 Invite requests (to channels with +1 channel mode)

WOLLABOT_TYPE_ACTION 256 An action (/me greets wollabot) in channel or private (query)

WOLLABOT_TYPE_TOPICCHANGE 512 Topic change in any channel

WOLLABOT_TYPE_NICKCHANGE 1024 Nick change in any channel

WOLLABOT_TYPE_KICK 2048 A kick in any channel

WOLLABOT_TYPE_QUIT 4096 A quit in any channel

WOLLABOT_TYPE_LOGIN 8192 LOGIN response (From a /LOGIN request)

WOLLABOT_TYPE_LIST 32768 WHO response (From a /WHO request)

WOLLABOT_TYPE_NAME 65536 NAME response (users in a given channel)

WOLLABOT_TYPE_MOTD 131072 MOTD (Message of the Day) data

WOLLABOT_TYPE_MODECHANGE 262144 A modechange in any channel you are in. This includes bans.

WOLLABOT_TYPE_PART 524288 Parts from a channel

WOLLABOT_TYPE_ERROR 1048576 Any error from the IRC server

WOLLABOT_TYPE_BANLIST 2097152 Response to BANS request

WOLLABOT_TYPE_TOPIC 4194304 Topic data from a channel

WOLLABOT_TYPE_NONRELEVANT 8388608 Non-relevant messages from IRC server

WOLLABOT_TYPE_WHOIS 16777216 WHOIS data

WOLLABOT_TYPE_WHOWAS 33554432 WHOWAS data

WOLLABOT_TYPE_USERMODE 67108864 Usermode changes

WOLLABOT_TYPE_CHANNELMODE 134217728 A channel mode change (ie. bans)

WOLLABOT_TYPE_CTCP_REQUEST 268435456 A CTCP request

WOLLABOT_TYPE_CTCP_REPLY 536870912 A CTCP reply

WOLLABOT_TYPE_ALL 1073741823 All of the above

In order to make your own type specification you use the bitwise operators. If you want all QUIT and PART
messages your could do the following.

Example 3-1. Binding to QUIT and PART messages using bind_type

$this->bind_type(’a_method’, WOLLABOT_TYPE_QUIT | WOLLABOT_TYPE_PART);

If you instead would like all messages except nickchanges and KICK messages you would use something like:

11

Chapter 3. Modules

Example 3-2. Binding to everything except nickchanges and KICK messages using bind_type

$this->bind_type(’b_method’, WOLLABOT_TYPE_ALL ^ (WOLLABOT_TYPE_NICKCHANGE | WOLLABOT_TYPE_KICK));

bind_timer

Name
bind_timer — Make a method be called with a given frequency

Synopsis

void bind_timer (string method , double frequency);

Description

Wollabot 0.3.0 introduces the concept of timers which enables you to run a user-definedmethod at a given
frequency specified in ms.

Note: Bear in mind that this bind method does not supply you with a $data parameter for obvious reasons.

Example 3-1. Printing the time every five minutes

class MyModule extends Wollabot_Module {

function MyModule () {
$this->bind_timer(’print_time’, 300000);

}

function print_time () {
$this->privmsg("#wollabot", "Time is now:".date("d/m/Y H:i:s"));

}

}

$wollabot->register_module("MyModule");

12

Chapter 3. Modules

send_raw

Name
send_raw — Semds a raw message to the IRC server

Synopsis

void send_raw (string out);

Description

This will sendout directly to the IRC server. Look into RFC 1459 (Appendix A) for guidance on what to send.

Example 3-1. Sending a raw message

$this->send_raw("PRIVMSG #wollabot :Hello - i’m sending a raw message");

send_privmsg

Name
send_privmsg — Sends a message to a channel or user (in query)

Synopsis

void send_privmsg (string target , string message);

13

Chapter 3. Modules

Description

This is pretty much the most important method of them all - the one for sending messages (message)to channels
and users. Supplytarget with your given target - that is, the user or the channel. Remember to prefix channels
with ’#’.

Example 3-1. Send a message using the send_privmsg method

$this->send_privmsg("#wollabot", "Hi - I’m a wollabot :-)");

send_ctcp

Name
send_ctcp — Sends a CTCP request to a channel or user

Synopsis

void send_ctcp (string target , string message);

Description

CTCP is an acronym for Client-To-Client Protocol (Appendix B) and may be used for gathering information about a
given client. Please refer to the above link for information on what queries can be made.

Example 3-1. Find out IRC client version from user ’foobar’

$this->send_ctcp("foobar", "VERSION");

Note: You need to setup a listener for the reply using the bind_type method.

14

Chapter 3. Modules

send_action

Name
send_action — Sends an action to a channel or user

Synopsis

void send_action (string target , string message);

Description

Actions is an IRC way of telling what you are doing. An action could be like (depending on the users client):

* madd loves britney

In order to send such one you need to supply a channel or user to send it to in thetarget parameter. Further more
you must include the actual action in themessage parameter.

Example 3-1. Getting the bot to indicate it’s strong feelings using send_action

$this->send_action("#wollabot", "loves britney");

send_notice

Name
send_notice — Sends a notice to a channel or user

Synopsis

void send_notice (string target , string message);

15

Chapter 3. Modules

Description

Notices is a great way to get the users attention for warnings or ie. on join messages. Thesend_notice needs two
parameters. One for the channel or user to send the notice to, that istarget . The other one is the message to send,
that ismessage .

Note: Some people consider it rude to notice a channel.

Example 3-1. Making an on-join message using bind_type and send_notice

class MyModule extends Wollabot_Module {

function MyModule () {
$this->bind_type(’onjoin_message’, WOLLABOT_TYPE_JOIN);

}

function onjoin_message ($data) {
if ($data[’channel’] == ’#wollabot’) {

$this->send_notice($data[’nick’], "Welcome to #wollabot. Please be nice.");
}

}

}

$wollabot->register_module("MyModule");

is_op

Name
is_op — Check if a user is op on a given channel

Synopsis

bool is_op (string channel [, string user]);

16

Chapter 3. Modules

Description

is_op provides a way of checking if a givenuser is op on a givenchannel . If no user is specified the bot itself
is used.

Example 3-1. Ask for ops if the bot doesn’t have

if (!$this->is_op("#wollabot")) $this->send_privmsg("razor", "Please op me");

is_voice

Name
is_voice — Check if a user is voice on a given channel

Synopsis

bool is_voice (string channel [, string target]);

Description

is_voice provides a way of checking if a givenuser has voice on a givenchannel . If no user is specified the
bot itself is used.

Example 3-1. Ask for voice if the bot doesn’t have

if (!$this->is_voice("#wollabot")) $this->send_privmsg("razor", "Please voice me");

17

Chapter 3. Modules

is_on_channel

Name
is_on_channel — Checks if a user is on a given channel

Synopsis

bool is_on_channel (string channel [, string nickname]);

Description

is_on_channel provides a way of checking if a givenuser has is on a givenchannel . If no user is specified
the bot itself is used.

Example 3-1. Making the bot join a channel if not on it

if (!$this->is_on_channel("#wollabot")) $this->join("#wollabot");

mode

Name
mode — Changes user/channel-mode

Synopsis

void mode(string target , string mode);

Description

Modes are used to define settings for channels and users. See RFC 1459 section 4.2.3 for the available modes
(Appendix A).

18

Chapter 3. Modules

Example 3-1. Op a user

$this->mode("#wollabot", "+o razor");

kick

Name
kick — Kicks a user (or multiple) from a given channel

Synopsis

void kick (mixed targets , string channel , [string reason]);

Description

Depending on whethertargets is an array or a string, multiple or single users can be kicked from a given
channel with a reason (but not needed - if not specified a default reason saying ’Sod off’ will be issued).

Example 3-1. Kick stupiduser from a channel

$this->kick("stupiduser", "#wollabot", "You’re stupid");

change_nick

Name
change_nick — Changes the nick of the bot

19

Chapter 3. Modules

Synopsis

void change_nick (string nick);

Description

This function is pretty selfexplainable. It changes the bots nickname.

Example 3-1. Changing the bots nick

$this->nick("foobot");

topic

Name
topic — Sets the topic for a given channel

Synopsis

void topic (string channel , string topic);

Description

On IRC the topic is used to display static information to the users. It can be set usingtopic which uses to
parameters.channel is the channel in prospect andtopic is the new topic to be set.

Example 3-1. Setting the topic

$this->topic("#wollabot", "Welcome to #wollabot - enjoy your stay!");

20

Chapter 3. Modules

join

Name
join — Make the bot join a channel

Synopsis

void join (string channel , [string key]);

Description

This function makes the bot join a givenchannel . If the channel is guarded bykey it can be supplied using the
second parameter.

Example 3-1. Joining a channel

$this->join("#wollabot");

invite

Name
invite — Invite a user to a given channel

Synopsis

void invite (string channel , string nickname);

Description

If a channel has set channelmode +i - you will need an invitation to join. such one can be issued by the bot using this
function. Just tell it whichchannel to invite to and whichnickname to invite.

21

Chapter 3. Modules

Example 3-1. Inviting a user to a channel

$this->invite("#wollabot", "razor");

22

Appendix A. RFC 1459: Internet Relay Chat
Protocol

Network Working Group J. Oikarinen
Request for Comments: 1459 D. Reed

May 1993

Internet Relay Chat Protocol

Status of This Memo

This memo defines an Experimental Protocol for the Internet
community. Discussion and suggestions for improvement are requested.
Please refer to the current edition of the "IAB Official Protocol
Standards" for the standardization state and status of this protocol.
Distribution of this memo is unlimited.

Abstract

The IRC protocol was developed over the last 4 years since it was
first implemented as a means for users on a BBS to chat amongst
themselves. Now it supports a world-wide network of servers and
clients, and is stringing to cope with growth. Over the past 2 years,
the average number of users connected to the main IRC network has
grown by a factor of 10.

The IRC protocol is a text-based protocol, with the simplest client
being any socket program capable of connecting to the server.

Table of Contents

1. INTRODUCTION ... 4
1.1 Servers .. 4
1.2 Clients .. 5

1.2.1 Operators .. 5
1.3 Channels .. 5
1.3.1 Channel Operators 6

2. THE IRC SPECIFICATION 7
2.1 Overview .. 7
2.2 Character codes ... 7
2.3 Messages .. 7

2.3.1 Message format in ’pseudo’ BNF 8
2.4 Numeric replies ... 10

3. IRC Concepts .. 10
3.1 One-to-one communication 10
3.2 One-to-many ... 11

3.2.1 To a list .. 11
3.2.2 To a group (channel) 11
3.2.3 To a host/server mask 12

23

Appendix A. RFC 1459: Internet Relay Chat Protocol

3.3 One to all .. 12

3.3.1 Client to Client 12
3.3.2 Clients to Server 12
3.3.3 Server to Server 12

4. MESSAGE DETAILS ... 13
4.1 Connection Registration 13

4.1.1 Password message 14
4.1.2 Nickname message 14
4.1.3 User message 15
4.1.4 Server message 16
4.1.5 Operator message 17
4.1.6 Quit message 17
4.1.7 Server Quit message 18

4.2 Channel operations 19
4.2.1 Join message 19
4.2.2 Part message 20
4.2.3 Mode message 21

4.2.3.1 Channel modes 21
4.2.3.2 User modes 22

4.2.4 Topic message 23
4.2.5 Names message 24
4.2.6 List message 24
4.2.7 Invite message 25
4.2.8 Kick message 25

4.3 Server queries and commands 26
4.3.1 Version message 26
4.3.2 Stats message 27
4.3.3 Links message 28
4.3.4 Time message 29
4.3.5 Connect message 29
4.3.6 Trace message 30
4.3.7 Admin message 31
4.3.8 Info message 31

4.4 Sending messages .. 32
4.4.1 Private messages 32
4.4.2 Notice messages 33

4.5 User-based queries 33
4.5.1 Who query .. 33
4.5.2 Whois query .. 34
4.5.3 Whowas message 35

4.6 Miscellaneous messages 35
4.6.1 Kill message 36
4.6.2 Ping message 37
4.6.3 Pong message 37
4.6.4 Error message 38

5. OPTIONAL MESSAGES ... 38
5.1 Away message .. 38
5.2 Rehash command .. 39
5.3 Restart command ... 39

5.4 Summon message .. 40
5.5 Users message ... 40

24

Appendix A. RFC 1459: Internet Relay Chat Protocol

5.6 Operwall command .. 41
5.7 Userhost message .. 42
5.8 Ison message .. 42

6. REPLIES ... 43
6.1 Error Replies ... 43
6.2 Command responses 48
6.3 Reserved numerics 56

7. Client and server authentication 56
8. Current Implementations Details 56

8.1 Network protocol: TCP 57
8.1.1 Support of Unix sockets 57

8.2 Command Parsing ... 57
8.3 Message delivery .. 57
8.4 Connection ’Liveness’ 58
8.5 Establishing a server-client connection 58
8.6 Establishing a server-server connection 58

8.6.1 State information exchange when connecting 59
8.7 Terminating server-client connections 59
8.8 Terminating server-server connections 59
8.9 Tracking nickname changes 60
8.10 Flood control of clients 60
8.11 Non-blocking lookups 61

8.11.1 Hostname (DNS) lookups 61
8.11.2 Username (Ident) lookups 61

8.12 Configuration file 61
8.12.1 Allowing clients to connect 62
8.12.2 Operators ... 62
8.12.3 Allowing servers to connect 62
8.12.4 Administrivia 63

8.13 Channel membership 63
9. Current problems .. 63

9.1 Scalability ... 63
9.2 Labels .. 63

9.2.1 Nicknames .. 63
9.2.2 Channels ... 64
9.2.3 Servers .. 64

9.3 Algorithms .. 64
10. Support and availability 64
11. Security Considerations 65
12. Authors’ Addresses ... 65

1. INTRODUCTION

The IRC (Internet Relay Chat) protocol has been designed over a
number of years for use with text based conferencing. This document
describes the current IRC protocol.

The IRC protocol has been developed on systems using the TCP/IP
network protocol, although there is no requirement that this remain
the only sphere in which it operates.

IRC itself is a teleconferencing system, which (through the use of
the client-server model) is well-suited to running on many machines

25

Appendix A. RFC 1459: Internet Relay Chat Protocol

in a distributed fashion. A typical setup involves a single process
(the server) forming a central point for clients (or other servers)
to connect to, performing the required message delivery/multiplexing
and other functions.

1.1 Servers

The server forms the backbone of IRC, providing a point to which
clients may connect to to talk to each other, and a point for other
servers to connect to, forming an IRC network. The only network
configuration allowed for IRC servers is that of a spanning tree [see
Fig. 1] where each server acts as a central node for the rest of the
net it sees.

[Server 15] [Server 13] [Server 14]
/ \ /

/ \ /
[Server 11] ------ [Server 1] [Server 12]

/ \ /
/ \ /

[Server 2] [Server 3]
/ \ \

/ \ \
[Server 4] [Server 5] [Server 6]

/ | \ /
/ | \ /

/ | ____ /
/ | \ /

[Server 7] [Server 8] [Server 9] [Server 10]

:
[etc.]

:

[Fig. 1. Format of IRC server network]

1.2 Clients

A client is anything connecting to a server that is not another
server. Each client is distinguished from other clients by a unique
nickname having a maximum length of nine (9) characters. See the
protocol grammar rules for what may and may not be used in a
nickname. In addition to the nickname, all servers must have the
following information about all clients: the real name of the host
that the client is running on, the username of the client on that
host, and the server to which the client is connected.

1.2.1 Operators

To allow a reasonable amount of order to be kept within the IRC
network, a special class of clients (operators) is allowed to perform
general maintenance functions on the network. Although the powers
granted to an operator can be considered as ’dangerous’, they are

26

Appendix A. RFC 1459: Internet Relay Chat Protocol

nonetheless required. Operators should be able to perform basic
network tasks such as disconnecting and reconnecting servers as
needed to prevent long-term use of bad network routing. In
recognition of this need, the protocol discussed herein provides for
operators only to be able to perform such functions. See sections
4.1.7 (SQUIT) and 4.3.5 (CONNECT).

A more controversial power of operators is the ability to remove a
user from the connected network by ’force’, i.e. operators are able
to close the connection between any client and server. The
justification for this is delicate since its abuse is both
destructive and annoying. For further details on this type of
action, see section 4.6.1 (KILL).

1.3 Channels

A channel is a named group of one or more clients which will all
receive messages addressed to that channel. The channel is created
implicitly when the first client joins it, and the channel ceases to
exist when the last client leaves it. While channel exists, any
client can reference the channel using the name of the channel.

Channels names are strings (beginning with a ’&’ or ’#’ character) of
length up to 200 characters. Apart from the the requirement that the
first character being either ’&’ or ’#’; the only restriction on a
channel name is that it may not contain any spaces (’ ’), a control G
(^G or ASCII 7), or a comma (’,’ which is used as a list item
separator by the protocol).

There are two types of channels allowed by this protocol. One is a
distributed channel which is known to all the servers that are

connected to the network. These channels are marked by the first
character being a only clients on the server where it exists may join
it. These are distinguished by a leading ’&’ character. On top of
these two types, there are the various channel modes available to
alter the characteristics of individual channels. See section 4.2.3
(MODE command) for more details on this.

To create a new channel or become part of an existing channel, a user
is required to JOIN the channel. If the channel doesn’t exist prior
to joining, the channel is created and the creating user becomes a
channel operator. If the channel already exists, whether or not your
request to JOIN that channel is honoured depends on the current modes
of the channel. For example, if the channel is invite-only, (+i),
then you may only join if invited. As part of the protocol, a user
may be a part of several channels at once, but a limit of ten (10)
channels is recommended as being ample for both experienced and
novice users. See section 8.13 for more information on this.

If the IRC network becomes disjoint because of a split between two
servers, the channel on each side is only composed of those clients
which are connected to servers on the respective sides of the split,

27

Appendix A. RFC 1459: Internet Relay Chat Protocol

possibly ceasing to exist on one side of the split. When the split
is healed, the connecting servers announce to each other who they
think is in each channel and the mode of that channel. If the
channel exists on both sides, the JOINs and MODEs are interpreted in
an inclusive manner so that both sides of the new connection will
agree about which clients are in the channel and what modes the
channel has.

1.3.1 Channel Operators

The channel operator (also referred to as a "chop" or "chanop") on a
given channel is considered to ’own’ that channel. In recognition of
this status, channel operators are endowed with certain powers which
enable them to keep control and some sort of sanity in their channel.
As an owner of a channel, a channel operator is not required to have
reasons for their actions, although if their actions are generally
antisocial or otherwise abusive, it might be reasonable to ask an IRC
operator to intervene, or for the usersjust leave and go elsewhere
and form their own channel.

The commands which may only be used by channel operators are:

KICK - Eject a client from the channel
MODE - Change the channel’s mode
INVITE - Invite a client to an invite-only channel (mode +i)
TOPIC - Change the channel topic in a mode +t channel

A channel operator is identified by the ’@’ symbol next to their
nickname whenever it is associated with a channel (ie replies to the
NAMES, WHO and WHOIS commands).

2. The IRC Specification

2.1 Overview

The protocol as described herein is for use both with server to
server and client to server connections. There are, however, more
restrictions on client connections (which are considered to be
untrustworthy) than on server connections.

2.2 Character codes

No specific character set is specified. The protocol is based on a a
set of codes which are composed of eight (8) bits, making up an
octet. Each message may be composed of any number of these octets;
however, some octet values are used for control codes which act as
message delimiters.

Regardless of being an 8-bit protocol, the delimiters and keywords
are such that protocol is mostly usable from USASCII terminal and a
telnet connection.

Because of IRC’s scandanavian origin, the characters {}| are

28

Appendix A. RFC 1459: Internet Relay Chat Protocol

considered to be the lower case equivalents of the characters []\,
respectively. This is a critical issue when determining the
equivalence of two nicknames.

2.3 Messages

Servers and clients send eachother messages which may or may not
generate a reply. If the message contains a valid command, as
described in later sections, the client should expect a reply as
specified but it is not advised to wait forever for the reply; client
to server and server to server communication is essentially
asynchronous in nature.

Each IRC message may consist of up to three main parts: the prefix
(optional), the command, and the command parameters (of which there
may be up to 15). The prefix, command, and all parameters are
separated by one (or more) ASCII space character(s) (0x20).

The presence of a prefix is indicated with a single leading ASCII
colon character (’:’, 0x3b), which must be the first character of the
message itself. There must be no gap (whitespace) between the colon
and the prefix. The prefix is used by servers to indicate the true

origin of the message. If the prefix is missing from the message, it
is assumed to have originated from the connection from which it was
received. Clients should not use prefix when sending a message from
themselves; if they use a prefix, the only valid prefix is the
registered nickname associated with the client. If the source
identified by the prefix cannot be found from the server’s internal
database, or if the source is registered from a different link than
from which the message arrived, the server must ignore the message
silently.

The command must either be a valid IRC command or a three (3) digit
number represented in ASCII text.

IRC messages are always lines of characters terminated with a CR-LF
(Carriage Return - Line Feed) pair, and these messages shall not
exceed 512 characters in length, counting all characters including
the trailing CR-LF. Thus, there are 510 characters maximum allowed
for the command and its parameters. There is no provision for
continuation message lines. See section 7 for more details about
current implementations.

2.3.1 Message format in ’pseudo’ BNF

The protocol messages must be extracted from the contiguous stream of
octets. The current solution is to designate two characters, CR and
LF, as message separators. Empty messages are silently ignored,
which permits use of the sequence CR-LF between messages
without extra problems.

The extracted message is parsed into the components <prefix >,

29

Appendix A. RFC 1459: Internet Relay Chat Protocol

<command> and list of parameters matched either by <middle > or
<trailing > components.

The BNF representation for this is:

<message> ::= [’:’ <prefix > <SPACE>] <command> <params > <crlf >

<prefix > ::= <servername > | <nick > [’!’ <user >] [’@’ <host >]
<command> ::= <letter > { <letter > } | <number > <number > <number >

<SPACE> ::= ’ ’ { ’ ’ }
<params > ::= <SPACE> [’:’ <trailing > | <middle > <params >]

<middle > ::= <Any *non-empty* sequence of octets not including SPACE
or NUL or CR or LF, the first of which may not be ’:’ >

<trailing > ::= <Any, possibly *empty*, sequence of octets not including
NUL or CR or LF >

<crlf > ::= CR LF

NOTES:

1) <SPACE> is consists only of SPACE character(s) (0x20).
Specially notice that TABULATION, and all other control
characters are considered NON-WHITE-SPACE.

2) After extracting the parameter list, all parameters are equal,
whether matched by <middle > or <trailing >. <Trailing > is just
a syntactic trick to allow SPACE within parameter.

3) The fact that CR and LF cannot appear in parameter strings is
just artifact of the message framing. This might change later.

4) The NUL character is not special in message framing, and
basically could end up inside a parameter, but as it would
cause extra complexities in normal C string handling. Therefore
NUL is not allowed within messages.

5) The last parameter may be an empty string.

6) Use of the extended prefix ([’!’ <user >] [’@’ <host >]) must
not be used in server to server communications and is only
intended for server to client messages in order to provide
clients with more useful information about who a message is
from without the need for additional queries.

Most protocol messages specify additional semantics and syntax for
the extracted parameter strings dictated by their position in the
list. For example, many server commands will assume that the first
parameter after the command is the list of targets, which can be
described with:

<target > ::= <to > ["," <target >]
<to > ::= <channel > | <user > ’@’ <servername > | <nick > | <mask>

<channel > ::= (’#’ | ’&’) <chstring >

30

Appendix A. RFC 1459: Internet Relay Chat Protocol

<servername > ::= <host >

<host > ::= see RFC 952 [DNS:4] for details on allowed hostnames
<nick > ::= <letter > { <letter > | <number > | <special > }
<mask> ::= (’#’ | ’$’) <chstring >

<chstring > ::= <any 8bit code except SPACE, BELL, NUL, CR, LF and
comma (’,’) >

Other parameter syntaxes are:

<user > ::= <nonwhite > { <nonwhite > }
<letter > ::= ’a’ ... ’z’ | ’A’ ... ’Z’
<number > ::= ’0’ ... ’9’
<special > ::= ’-’ | ’[’ | ’]’ | ’\’ | ’‘’ | ’^’ | ’{’ | ’}’

<nonwhite > ::= <any 8bit code except SPACE (0x20), NUL (0x0), CR
(0xd), and LF (0xa) >

2.4 Numeric replies

Most of the messages sent to the server generate a reply of some
sort. The most common reply is the numeric reply, used for both
errors and normal replies. The numeric reply must be sent as one
message consisting of the sender prefix, the three digit numeric, and
the target of the reply. A numeric reply is not allowed to originate
from a client; any such messages received by a server are silently
dropped. In all other respects, a numeric reply is just like a normal
message, except that the keyword is made up of 3 numeric digits
rather than a string of letters. A list of different replies is
supplied in section 6.

3. IRC Concepts.

This section is devoted to describing the actual concepts behind the
organization of the IRC protocol and how the current
implementations deliver different classes of messages.

1--\
A D---4

2--/ \ /
B----C

/ \
3 E

Servers: A, B, C, D, E Clients: 1, 2, 3, 4

[Fig. 2. Sample small IRC network]

3.1 One-to-one communication

Communication on a one-to-one basis is usually only performed by
clients, since most server-server traffic is not a result of servers
talking only to each other. To provide a secure means for clients to
talk to each other, it is required that all servers be able to send a

31

Appendix A. RFC 1459: Internet Relay Chat Protocol

message in exactly one direction along the spanning tree in order to
reach any client. The path of a message being delivered is the
shortest path between any two points on the spanning tree.

The following examples all refer to Figure 2 above.

Example 1:
A message between clients 1 and 2 is only seen by server A, which
sends it straight to client 2.

Example 2:
A message between clients 1 and 3 is seen by servers A & B, and
client 3. No other clients or servers are allowed see the message.

Example 3:
A message between clients 2 and 4 is seen by servers A, B, C & D
and client 4 only.

3.2 One-to-many

The main goal of IRC is to provide a forum which allows easy and
efficient conferencing (one to many conversations). IRC offers
several means to achieve this, each serving its own purpose.

3.2.1 To a list

The least efficient style of one-to-many conversation is through
clients talking to a ’list’ of users. How this is done is almost
self explanatory: the client gives a list of destinations to which
the message is to be delivered and the server breaks it up and
dispatches a separate copy of the message to each given destination.
This isn’t as efficient as using a group since the destination list
is broken up and the dispatch sent without checking to make sure
duplicates aren’t sent down each path.

3.2.2 To a group (channel)

In IRC the channel has a role equivalent to that of the multicast
group; their existence is dynamic (coming and going as people join
and leave channels) and the actual conversation carried out on a
channel is only sent to servers which are supporting users on a given
channel. If there are multiple users on a server in the same
channel, the message text is sent only once to that server and then
sent to each client on the channel. This action is then repeated for
each client-server combination until the original message has fanned
out and reached each member of the channel.

The following examples all refer to Figure 2.

Example 4:
Any channel with 1 client in it. Messages to the channel go to the
server and then nowhere else.

32

Appendix A. RFC 1459: Internet Relay Chat Protocol

Example 5:
2 clients in a channel. All messages traverse a path as if they
were private messages between the two clients outside a channel.

Example 6:
Clients 1, 2 and 3 in a channel. All messages to the channel are
sent to all clients and only those servers which must be traversed
by the message if it were a private message to a single client. If
client 1 sends a message, it goes back to client 2 and then via
server B to client 3.

3.2.3 To a host/server mask

To provide IRC operators with some mechanism to send messages to a
large body of related users, host and server mask messages are
provided. These messages are sent to users whose host or server
information match that of the mask. The messages are only sent to
locations where users are, in a fashion similar to that of channels.

3.3 One-to-all

The one-to-all type of message is better described as a broadcast
message, sent to all clients or servers or both. On a large network
of users and servers, a single message can result in a lot of traffic
being sent over the network in an effort to reach all of the desired
destinations.

For some messages, there is no option but to broadcast it to all
servers so that the state information held by each server is
reasonably consistent between servers.

3.3.1 Client-to-Client

There is no class of message which, from a single message, results in
a message being sent to every other client.

3.3.2 Client-to-Server

Most of the commands which result in a change of state information
(such as channel membership, channel mode, user status, etc) must be
sent to all servers by default, and this distribution may not be
changed by the client.

3.3.3 Server-to-Server.

While most messages between servers are distributed to all ’other’
servers, this is only required for any message that affects either a
user, channel or server. Since these are the basic items found in

IRC, nearly all messages originating from a server are broadcast to
all other connected servers.

4. Message details

33

Appendix A. RFC 1459: Internet Relay Chat Protocol

On the following pages are descriptions of each message recognized by
the IRC server and client. All commands described in this section
must be implemented by any server for this protocol.

Where the reply ERR_NOSUCHSERVER is listed, it means that the
<server > parameter could not be found. The server must not send any
other replies after this for that command.

The server to which a client is connected is required to parse the
complete message, returning any appropriate errors. If the server
encounters a fatal error while parsing a message, an error must be
sent back to the client and the parsing terminated. A fatal error
may be considered to be incorrect command, a destination which is
otherwise unknown to the server (server, nick or channel names fit
this category), not enough parameters or incorrect privileges.

If a full set of parameters is presented, then each must be checked
for validity and appropriate responses sent back to the client. In
the case of messages which use parameter lists using the comma as an
item separator, a reply must be sent for each item.

In the examples below, some messages appear using the full format:

:Name COMMAND parameter list

Such examples represent a message from "Name" in transit between
servers, where it is essential to include the name of the original
sender of the message so remote servers may send back a reply along
the correct path.

4.1 Connection Registration

The commands described here are used to register a connection with an
IRC server as either a user or a server as well as correctly
disconnect.

A "PASS" command is not required for either client or server
connection to be registered, but it must precede the server message
or the latter of the NICK/USER combination. It is strongly
recommended that all server connections have a password in order to
give some level of security to the actual connections. The
recommended order for a client to register is as follows:

1. Pass message
2. Nick message
3. User message

4.1.1 Password message

Command: PASS
Parameters: <password >

34

Appendix A. RFC 1459: Internet Relay Chat Protocol

The PASS command is used to set a ’connection password’. The
password can and must be set before any attempt to register the
connection is made. Currently this requires that clients send a PASS
command before sending the NICK/USER combination and servers *must*
send a PASS command before any SERVER command. The password supplied
must match the one contained in the C/N lines (for servers) or I
lines (for clients). It is possible to send multiple PASS commands
before registering but only the last one sent is used for
verification and it may not be changed once registered. Numeric
Replies:

ERR_NEEDMOREPARAMS ERR_ALREADYREGISTRED

Example:

PASS secretpasswordhere

4.1.2 Nick message

Command: NICK
Parameters: <nickname > [<hopcount >]

NICK message is used to give user a nickname or change the previous
one. The <hopcount > parameter is only used by servers to indicate
how far away a nick is from its home server. A local connection has
a hopcount of 0. If supplied by a client, it must be ignored.

If a NICK message arrives at a server which already knows about an
identical nickname for another client, a nickname collision occurs.
As a result of a nickname collision, all instances of the nickname
are removed from the server’s database, and a KILL command is issued
to remove the nickname from all other server’s database. If the NICK
message causing the collision was a nickname change, then the
original (old) nick must be removed as well.

If the server recieves an identical NICK from a client which is
directly connected, it may issue an ERR_NICKCOLLISION to the local
client, drop the NICK command, and not generate any kills.

Numeric Replies:

ERR_NONICKNAMEGIVEN ERR_ERRONEUSNICKNAME
ERR_NICKNAMEINUSE ERR_NICKCOLLISION

Example:

NICK Wiz ; Introducing new nick "Wiz".

:WiZ NICK Kilroy ; WiZ changed his nickname to Kilroy.

4.1.3 User message

Command: USER

35

Appendix A. RFC 1459: Internet Relay Chat Protocol

Parameters: <username > <hostname > <servername > <realname >

The USER message is used at the beginning of connection to specify
the username, hostname, servername and realname of s new user. It is
also used in communication between servers to indicate new user
arriving on IRC, since only after both USER and NICK have been
received from a client does a user become registered.

Between servers USER must to be prefixed with client’s NICKname.
Note that hostname and servername are normally ignored by the IRC
server when the USER command comes from a directly connected client
(for security reasons), but they are used in server to server
communication. This means that a NICK must always be sent to a
remote server when a new user is being introduced to the rest of the
network before the accompanying USER is sent.

It must be noted that realname parameter must be the last parameter,
because it may contain space characters and must be prefixed with a
colon (’:’) to make sure this is recognised as such.

Since it is easy for a client to lie about its username by relying
solely on the USER message, the use of an "Identity Server" is
recommended. If the host which a user connects from has such a
server enabled the username is set to that as in the reply from the
"Identity Server".

Numeric Replies:

ERR_NEEDMOREPARAMS ERR_ALREADYREGISTRED

Examples:

USER guest tolmoon tolsun :Ronnie Reagan

; User registering themselves with a
username of "guest" and real name
"Ronnie Reagan".

:testnick USER guest tolmoon tolsun :Ronnie Reagan
; message between servers with the
nickname for which the USER command
belongs to

4.1.4 Server message

Command: SERVER
Parameters: <servername > <hopcount > <info >

The server message is used to tell a server that the other end of a
new connection is a server. This message is also used to pass server
data over whole net. When a new server is connected to net,
information about it be broadcast to the whole network. <hopcount >

is used to give all servers some internal information on how far away

36

Appendix A. RFC 1459: Internet Relay Chat Protocol

all servers are. With a full server list, it would be possible to
construct a map of the entire server tree, but hostmasks prevent this
from being done.

The SERVER message must only be accepted from either (a) a connection
which is yet to be registered and is attempting to register as a
server, or (b) an existing connection to another server, in which
case the SERVER message is introducing a new server behind that
server.

Most errors that occur with the receipt of a SERVER command result in
the connection being terminated by the destination host (target
SERVER). Error replies are usually sent using the "ERROR" command
rather than the numeric since the ERROR command has several useful
properties which make it useful here.

If a SERVER message is parsed and attempts to introduce a server
which is already known to the receiving server, the connection from
which that message must be closed (following the correct procedures),
since a duplicate route to a server has formed and the acyclic nature
of the IRC tree broken.

Numeric Replies:

ERR_ALREADYREGISTRED

Example:

SERVER test.oulu.fi 1 :[tolsun.oulu.fi] Experimental server
; New server test.oulu.fi introducing
itself and attempting to register. The
name in []’s is the hostname for the
host running test.oulu.fi.

:tolsun.oulu.fi SERVER csd.bu.edu 5 :BU Central Server
; Server tolsun.oulu.fi is our uplink
for csd.bu.edu which is 5 hops away.

4.1.5 Oper

Command: OPER
Parameters: <user > <password >

OPER message is used by a normal user to obtain operator privileges.
The combination of <user > and <password > are required to gain
Operator privileges.

If the client sending the OPER command supplies the correct password
for the given user, the server then informs the rest of the network
of the new operator by issuing a "MODE +o" for the clients nickname.

The OPER message is client-server only.

37

Appendix A. RFC 1459: Internet Relay Chat Protocol

Numeric Replies:

ERR_NEEDMOREPARAMS RPL_YOUREOPER
ERR_NOOPERHOST ERR_PASSWDMISMATCH

Example:

OPER foo bar ; Attempt to register as an operator
using a username of "foo" and "bar" as
the password.

4.1.6 Quit

Command: QUIT
Parameters: [<Quit message >]

A client session is ended with a quit message. The server must close
the connection to a client which sends a QUIT message. If a "Quit
Message" is given, this will be sent instead of the default message,
the nickname.

When netsplits (disconnecting of two servers) occur, the quit message

is composed of the names of two servers involved, separated by a
space. The first name is that of the server which is still connected
and the second name is that of the server that has become
disconnected.

If, for some other reason, a client connection is closed without the
client issuing a QUIT command (e.g. client dies and EOF occurs
on socket), the server is required to fill in the quit message with
some sort of message reflecting the nature of the event which
caused it to happen.

Numeric Replies:

None.

Examples:

QUIT :Gone to have lunch ; Preferred message format.

4.1.7 Server quit message

Command: SQUIT
Parameters: <server > <comment>

The SQUIT message is needed to tell about quitting or dead servers.
If a server wishes to break the connection to another server it must
send a SQUIT message to the other server, using the the name of the
other server as the server parameter, which then closes its
connection to the quitting server.

38

Appendix A. RFC 1459: Internet Relay Chat Protocol

This command is also available operators to help keep a network of
IRC servers connected in an orderly fashion. Operators may also
issue an SQUIT message for a remote server connection. In this case,
the SQUIT must be parsed by each server inbetween the operator and
the remote server, updating the view of the network held by each
server as explained below.

The <comment> should be supplied by all operators who execute a SQUIT
for a remote server (that is not connected to the server they are
currently on) so that other operators are aware for the reason of
this action. The <comment> is also filled in by servers which may
place an error or similar message here.

Both of the servers which are on either side of the connection being
closed are required to to send out a SQUIT message (to all its other
server connections) for all other servers which are considered to be
behind that link.

Similarly, a QUIT message must be sent to the other connected servers
rest of the network on behalf of all clients behind that link. In
addition to this, all channel members of a channel which lost a
member due to the split must be sent a QUIT message.

If a server connection is terminated prematurely (e.g. the server on
the other end of the link died), the server which detects
this disconnection is required to inform the rest of the network
that the connection has closed and fill in the comment field
with something appropriate.

Numeric replies:

ERR_NOPRIVILEGES ERR_NOSUCHSERVER

Example:

SQUIT tolsun.oulu.fi :Bad Link ? ; the server link tolson.oulu.fi has
been terminated because of "Bad Link".

:Trillian SQUIT cm22.eng.umd.edu :Server out of control
; message from Trillian to disconnect

"cm22.eng.umd.edu" from the net
because "Server out of control".

4.2 Channel operations

This group of messages is concerned with manipulating channels, their
properties (channel modes), and their contents (typically clients).
In implementing these, a number of race conditions are inevitable
when clients at opposing ends of a network send commands which will
ultimately clash. It is also required that servers keep a nickname
history to ensure that wherever a <nick > parameter is given, the
server check its history in case it has recently been changed.

39

Appendix A. RFC 1459: Internet Relay Chat Protocol

4.2.1 Join message

Command: JOIN
Parameters: <channel >{, <channel >} [<key >{, <key >}]

The JOIN command is used by client to start listening a specific
channel. Whether or not a client is allowed to join a channel is
checked only by the server the client is connected to; all other
servers automatically add the user to the channel when it is received
from other servers. The conditions which affect this are as follows:

1. the user must be invited if the channel is invite-only;

2. the user’s nick/username/hostname must not match any
active bans;

3. the correct key (password) must be given if it is set.

These are discussed in more detail under the MODE command (see
section 4.2.3 for more details).

Once a user has joined a channel, they receive notice about all
commands their server receives which affect the channel. This
includes MODE, KICK, PART, QUIT and of course PRIVMSG/NOTICE. The
JOIN command needs to be broadcast to all servers so that each server
knows where to find the users who are on the channel. This allows
optimal delivery of PRIVMSG/NOTICE messages to the channel.

If a JOIN is successful, the user is then sent the channel’s topic
(using RPL_TOPIC) and the list of users who are on the channel (using
RPL_NAMREPLY), which must include the user joining.

Numeric Replies:

ERR_NEEDMOREPARAMS ERR_BANNEDFROMCHAN
ERR_INVITEONLYCHAN ERR_BADCHANNELKEY
ERR_CHANNELISFULL ERR_BADCHANMASK
ERR_NOSUCHCHANNEL ERR_TOOMANYCHANNELS
RPL_TOPIC

Examples:

JOIN #foobar ; join channel #foobar.

JOIN &foo fubar ; join channel &foo using key "fubar".

JOIN #foo,&bar fubar ; join channel #foo using key "fubar"
and &bar using no key.

JOIN #foo,#bar fubar,foobar ; join channel #foo using key "fubar".
and channel #bar using key "foobar".

JOIN #foo,#bar ; join channels #foo and #bar.

40

Appendix A. RFC 1459: Internet Relay Chat Protocol

:WiZ JOIN #Twilight_zone ; JOIN message from WiZ

4.2.2 Part message

Command: PART
Parameters: <channel >{, <channel >}

The PART message causes the client sending the message to be removed
from the list of active users for all given channels listed in the
parameter string.

Numeric Replies:

ERR_NEEDMOREPARAMS ERR_NOSUCHCHANNEL
ERR_NOTONCHANNEL

Examples:

PART #twilight_zone ; leave channel "#twilight_zone"

PART #oz-ops,&group5 ; leave both channels "&group5" and
"#oz-ops".

4.2.3 Mode message

Command: MODE

The MODE command is a dual-purpose command in IRC. It allows both
usernames and channels to have their mode changed. The rationale for
this choice is that one day nicknames will be obsolete and the
equivalent property will be the channel.

When parsing MODE messages, it is recommended that the entire message
be parsed first and then the changes which resulted then passed on.

4.2.3.1 Channel modes

Parameters: <channel > {[+|-]|o|p|s|i|t|n|b|v} [<limit >] [<user >]
[<ban mask>]

The MODE command is provided so that channel operators may change the
characteristics of ‘their’ channel. It is also required that servers
be able to change channel modes so that channel operators may be
created.

The various modes available for channels are as follows:

o - give/take channel operator privileges;
p - private channel flag;
s - secret channel flag;
i - invite-only channel flag;
t - topic settable by channel operator only flag;

41

Appendix A. RFC 1459: Internet Relay Chat Protocol

n - no messages to channel from clients on the outside;
m - moderated channel;
l - set the user limit to channel;

b - set a ban mask to keep users out;
v - give/take the ability to speak on a moderated channel;
k - set a channel key (password).

When using the ’o’ and ’b’ options, a restriction on a total of three
per mode command has been imposed. That is, any combination of ’o’
and

4.2.3.2 User modes

Parameters: <nickname > {[+|-]|i|w|s|o}

The user MODEs are typically changes which affect either how the
client is seen by others or what ’extra’ messages the client is sent.
A user MODE command may only be accepted if both the sender of the
message and the nickname given as a parameter are both the same.

The available modes are as follows:

i - marks a users as invisible;
s - marks a user for receipt of server notices;
w - user receives wallops;
o - operator flag.

Additional modes may be available later on.

If a user attempts to make themselves an operator using the "+o"
flag, the attempt should be ignored. There is no restriction,
however, on anyone ‘deopping’ themselves (using "-o"). Numeric
Replies:

ERR_NEEDMOREPARAMS RPL_CHANNELMODEIS
ERR_CHANOPRIVSNEEDED ERR_NOSUCHNICK
ERR_NOTONCHANNEL ERR_KEYSET
RPL_BANLIST RPL_ENDOFBANLIST
ERR_UNKNOWNMODE ERR_NOSUCHCHANNEL

ERR_USERSDONTMATCH RPL_UMODEIS
ERR_UMODEUNKNOWNFLAG

Examples:

Use of Channel Modes:

MODE #Finnish +im ; Makes #Finnish channel moderated and
’invite-only’.

MODE #Finnish +o Kilroy ; Gives ’chanop’ privileges to Kilroy on

42

Appendix A. RFC 1459: Internet Relay Chat Protocol

channel #Finnish.

MODE #Finnish +v Wiz ; Allow WiZ to speak on #Finnish.

MODE #Fins -s ; Removes ’secret’ flag from channel
#Fins.

MODE #42 +k oulu ; Set the channel key to "oulu".

MODE #eu-opers +l 10 ; Set the limit for the number of users
on channel to 10.

MODE &oulu +b ; list ban masks set for channel.

MODE &oulu +b *!*@* ; prevent all users from joining.

MODE &oulu +b *!*@*.edu ; prevent any user from a hostname
matching *.edu from joining.

Use of user Modes:

:MODE WiZ -w ; turns reception of WALLOPS messages
off for WiZ.

:Angel MODE Angel +i ; Message from Angel to make themselves
invisible.

MODE WiZ -o ; WiZ ’deopping’ (removing operator
status). The plain reverse of this
command ("MODE WiZ +o") must not be
allowed from users since would bypass
the OPER command.

4.2.4 Topic message

Command: TOPIC
Parameters: <channel > [<topic >]

The TOPIC message is used to change or view the topic of a channel.
The topic for channel <channel > is returned if there is no <topic >

given. If the <topic > parameter is present, the topic for that
channel will be changed, if the channel modes permit this action.

Numeric Replies:

ERR_NEEDMOREPARAMS ERR_NOTONCHANNEL
RPL_NOTOPIC RPL_TOPIC
ERR_CHANOPRIVSNEEDED

Examples:

:Wiz TOPIC #test :New topic ;User Wiz setting the topic.

43

Appendix A. RFC 1459: Internet Relay Chat Protocol

TOPIC #test :another topic ;set the topic on #test to "another
topic".

TOPIC #test ; check the topic for #test.

4.2.5 Names message

Command: NAMES
Parameters: [<channel >{, <channel >}]

By using the NAMES command, a user can list all nicknames that are
visible to them on any channel that they can see. Channel names
which they can see are those which aren’t private (+p) or secret (+s)
or those which they are actually on. The <channel > parameter
specifies which channel(s) to return information about if valid.
There is no error reply for bad channel names.

If no <channel > parameter is given, a list of all channels and their
occupants is returned. At the end of this list, a list of users who
are visible but either not on any channel or not on a visible channel
are listed as being on ‘channel’ "*".

Numerics:

RPL_NAMREPLY RPL_ENDOFNAMES

Examples:

NAMES #twilight_zone,#42 ; list visible users on #twilight_zone
and #42 if the channels are visible to
you.

NAMES ; list all visible channels and users

4.2.6 List message

Command: LIST
Parameters: [<channel >{, <channel >} [<server >]]

The list message is used to list channels and their topics. If the
<channel > parameter is used, only the status of that channel
is displayed. Private channels are listed (without their
topics) as channel "Prv" unless the client generating the query is
actually on that channel. Likewise, secret channels are not listed

at all unless the client is a member of the channel in question.

Numeric Replies:

ERR_NOSUCHSERVER RPL_LISTSTART
RPL_LIST RPL_LISTEND

Examples:

44

Appendix A. RFC 1459: Internet Relay Chat Protocol

LIST ; List all channels.

LIST #twilight_zone,#42 ; List channels #twilight_zone and #42

4.2.7 Invite message

Command: INVITE
Parameters: <nickname > <channel >

The INVITE message is used to invite users to a channel. The
parameter <nickname > is the nickname of the person to be invited to
the target channel <channel >. There is no requirement that the
channel the target user is being invited to must exist or be a valid
channel. To invite a user to a channel which is invite only (MODE
+i), the client sending the invite must be recognised as being a
channel operator on the given channel.

Numeric Replies:

ERR_NEEDMOREPARAMS ERR_NOSUCHNICK
ERR_NOTONCHANNEL ERR_USERONCHANNEL
ERR_CHANOPRIVSNEEDED
RPL_INVITING RPL_AWAY

Examples:

:Angel INVITE Wiz #Dust ; User Angel inviting WiZ to channel
#Dust

INVITE Wiz #Twilight_Zone ; Command to invite WiZ to
#Twilight_zone

4.2.8 Kick command

Command: KICK
Parameters: <channel > <user > [<comment>]

The KICK command can be used to forcibly remove a user from a
channel. It ’kicks them out’ of the channel (forced PART).

Only a channel operator may kick another user out of a channel.
Each server that receives a KICK message checks that it is valid
(ie the sender is actually a channel operator) before removing
the victim from the channel.

Numeric Replies:

ERR_NEEDMOREPARAMS ERR_NOSUCHCHANNEL
ERR_BADCHANMASK ERR_CHANOPRIVSNEEDED
ERR_NOTONCHANNEL

Examples:

45

Appendix A. RFC 1459: Internet Relay Chat Protocol

KICK &Melbourne Matthew ; Kick Matthew from &Melbourne

KICK #Finnish John :Speaking English
; Kick John from #Finnish using
"Speaking English" as the reason
(comment).

:WiZ KICK #Finnish John ; KICK message from WiZ to remove John
from channel #Finnish

NOTE:
It is possible to extend the KICK command parameters to the

following:

<channel >{, <channel >} <user >{, <user >} [<comment>]

4.3 Server queries and commands

The server query group of commands has been designed to return
information about any server which is connected to the network. All
servers connected must respond to these queries and respond
correctly. Any invalid response (or lack thereof) must be considered
a sign of a broken server and it must be disconnected/disabled as
soon as possible until the situation is remedied.

In these queries, where a parameter appears as " <server >", it will
usually mean it can be a nickname or a server or a wildcard name of
some sort. For each parameter, however, only one query and set of
replies is to be generated.

4.3.1 Version message

Command: VERSION
Parameters: [<server >]

The VERSION message is used to query the version of the server
program. An optional parameter <server > is used to query the version
of the server program which a client is not directly connected to.

Numeric Replies:

ERR_NOSUCHSERVER RPL_VERSION

Examples:

:Wiz VERSION *.se ; message from Wiz to check the version
of a server matching "*.se"

VERSION tolsun.oulu.fi ; check the version of server
"tolsun.oulu.fi".

4.3.2 Stats message

46

Appendix A. RFC 1459: Internet Relay Chat Protocol

Command: STATS
Parameters: [<query > [<server >]]

The stats message is used to query statistics of certain server. If
<server > parameter is omitted, only the end of stats reply is sent
back. The implementation of this command is highly dependent on the
server which replies, although the server must be able to supply
information as described by the queries below (or similar).

A query may be given by any single letter which is only checked by
the destination server (if given as the <server > parameter) and is
otherwise passed on by intermediate servers, ignored and unaltered.
The following queries are those found in the current IRC
implementation and provide a large portion of the setup information
for that server. Although these may not be supported in the same way
by other versions, all servers should be able to supply a valid reply
to a STATS query which is consistent with the reply formats currently
used and the purpose of the query.

The currently supported queries are:

c - returns a list of servers which the server may connect
to or allow connections from;

h - returns a list of servers which are either forced to be
treated as leaves or allowed to act as hubs;

i - returns a list of hosts which the server allows a client
to connect from;

k - returns a list of banned username/hostname combinations
for that server;

l - returns a list of the server’s connections, showing how

long each connection has been established and the traffic
over that connection in bytes and messages for each
direction;

m - returns a list of commands supported by the server and
the usage count for each if the usage count is non zero;

o - returns a list of hosts from which normal clients may
become operators;

y - show Y (Class) lines from server’s configuration file;
u - returns a string showing how long the server has been up.

Numeric Replies:

ERR_NOSUCHSERVER
RPL_STATSCLINE RPL_STATSNLINE
RPL_STATSILINE RPL_STATSKLINE
RPL_STATSQLINE RPL_STATSLLINE
RPL_STATSLINKINFO RPL_STATSUPTIME
RPL_STATSCOMMANDS RPL_STATSOLINE
RPL_STATSHLINE RPL_ENDOFSTATS

Examples:

47

Appendix A. RFC 1459: Internet Relay Chat Protocol

STATS m ; check the command usage for the server
you are connected to

:Wiz STATS c eff.org ; request by WiZ for C/N line
information from server eff.org

4.3.3 Links message

Command: LINKS
Parameters: [[<remote server >] <server mask >]

With LINKS, a user can list all servers which are known by the server
answering the query. The returned list of servers must match the
mask, or if no mask is given, the full list is returned.

If <remote server > is given in addition to <server mask >, the LINKS
command is forwarded to the first server found that matches that name
(if any), and that server is then required to answer the query.

Numeric Replies:

ERR_NOSUCHSERVER
RPL_LINKS RPL_ENDOFLINKS

Examples:

LINKS *.au ; list all servers which have a name
that matches *.au;

:WiZ LINKS *.bu.edu *.edu ; LINKS message from WiZ to the first
server matching *.edu for a list of
servers matching *.bu.edu.

4.3.4 Time message

Command: TIME
Parameters: [<server >]

The time message is used to query local time from the specified
server. If the server parameter is not given, the server handling the
command must reply to the query.

Numeric Replies:

ERR_NOSUCHSERVER RPL_TIME

Examples:

TIME tolsun.oulu.fi ; check the time on the server
"tolson.oulu.fi"

Angel TIME *.au ; user angel checking the time on a

48

Appendix A. RFC 1459: Internet Relay Chat Protocol

server matching "*.au"

4.3.5 Connect message

Command: CONNECT
Parameters: <target server > [<port > [<remote server >]]

The CONNECT command can be used to force a server to try to establish
a new connection to another server immediately. CONNECT is a
privileged command and is to be available only to IRC Operators. If
a remote server is given then the CONNECT attempt is made by that
server to <target server > and <port >.

Numeric Replies:

ERR_NOSUCHSERVER ERR_NOPRIVILEGES
ERR_NEEDMOREPARAMS

Examples:

CONNECT tolsun.oulu.fi ; Attempt to connect a server to
tolsun.oulu.fi

:WiZ CONNECT eff.org 6667 csd.bu.edu
; CONNECT attempt by WiZ to get servers
eff.org and csd.bu.edu connected on port
6667.

4.3.6 Trace message

Command: TRACE
Parameters: [<server >]

TRACE command is used to find the route to specific server. Each
server that processes this message must tell the sender about it by
sending a reply indicating it is a pass-through link, forming a chain
of replies similar to that gained from using "traceroute". After
sending this reply back, it must then send the TRACE message to the
next server until given server is reached. If the <server > parameter
is omitted, it is recommended that TRACE command send a message to
the sender telling which servers the current server has direct
connection to.

If the destination given by " <server >" is an actual server, then the
destination server is required to report all servers and users which
are connected to it, although only operators are permitted to see
users present. If the destination given by <server > is a nickname,
they only a reply for that nickname is given.

Numeric Replies:

ERR_NOSUCHSERVER

49

Appendix A. RFC 1459: Internet Relay Chat Protocol

If the TRACE message is destined for another server, all intermediate
servers must return a RPL_TRACELINK reply to indicate that the TRACE
passed through it and where its going next.

RPL_TRACELINK
A TRACE reply may be composed of any number of the following numeric
replies.

RPL_TRACECONNECTING RPL_TRACEHANDSHAKE
RPL_TRACEUNKNOWN RPL_TRACEOPERATOR
RPL_TRACEUSER RPL_TRACESERVER
RPL_TRACESERVICE RPL_TRACENEWTYPE
RPL_TRACECLASS

Examples:

TRACE *.oulu.fi ; TRACE to a server matching *.oulu.fi

:WiZ TRACE AngelDust ; TRACE issued by WiZ to nick AngelDust

4.3.7 Admin command

Command: ADMIN
Parameters: [<server >]

The admin message is used to find the name of the administrator of
the given server, or current server if <server > parameter is omitted.
Each server must have the ability to forward ADMIN messages to other
servers.

Numeric Replies:

ERR_NOSUCHSERVER
RPL_ADMINME RPL_ADMINLOC1
RPL_ADMINLOC2 RPL_ADMINEMAIL

Examples:

ADMIN tolsun.oulu.fi ; request an ADMIN reply from
tolsun.oulu.fi

:WiZ ADMIN *.edu ; ADMIN request from WiZ for first
server found to match *.edu.

4.3.8 Info command

Command: INFO
Parameters: [<server >]

The INFO command is required to return information which describes
the server: its version, when it was compiled, the patchlevel, when
it was started, and any other miscellaneous information which may be
considered to be relevant.

50

Appendix A. RFC 1459: Internet Relay Chat Protocol

Numeric Replies:

ERR_NOSUCHSERVER
RPL_INFO RPL_ENDOFINFO

Examples:

INFO csd.bu.edu ; request an INFO reply from
csd.bu.edu

:Avalon INFO *.fi ; INFO request from Avalon for first
server found to match *.fi.

INFO Angel ; request info from the server that
Angel is connected to.

4.4 Sending messages

The main purpose of the IRC protocol is to provide a base for clients
to communicate with each other. PRIVMSG and NOTICE are the only
messages available which actually perform delivery of a text message
from one client to another - the rest just make it possible and try
to ensure it happens in a reliable and structured manner.

4.4.1 Private messages

Command: PRIVMSG
Parameters: <receiver >{, <receiver >} <text to be sent >

PRIVMSG is used to send private messages between users. <receiver >

is the nickname of the receiver of the message. <receiver > can also
be a list of names or channels separated with commas.

The <receiver > parameter may also me a host mask (#mask) or server
mask ($mask). In both cases the server will only send the PRIVMSG
to those who have a server or host matching the mask. The mask must
have at least 1 (one) "." in it and no wildcards following the
last ".". This requirement exists to prevent people sending messages
to "#*" or "$*", which would broadcast to all users; from
experience, this is abused more than used responsibly and properly.
Wildcards are the ’*’ and ’?’ characters. This extension to
the PRIVMSG command is only available to Operators.

Numeric Replies:

ERR_NORECIPIENT ERR_NOTEXTTOSEND
ERR_CANNOTSENDTOCHAN ERR_NOTOPLEVEL
ERR_WILDTOPLEVEL ERR_TOOMANYTARGETS
ERR_NOSUCHNICK
RPL_AWAY

Examples:

51

Appendix A. RFC 1459: Internet Relay Chat Protocol

:Angel PRIVMSG Wiz :Hello are you receiving this message ?
; Message from Angel to Wiz.

PRIVMSG Angel :yes I’m receiving it !receiving it !’u >(768u+1n) .br ;
Message to Angel.

PRIVMSG jto@tolsun.oulu.fi :Hello !
; Message to a client on server

tolsun.oulu.fi with username of "jto".

PRIVMSG $*.fi :Server tolsun.oulu.fi rebooting.
; Message to everyone on a server which
has a name matching *.fi.

PRIVMSG #*.edu :NSFNet is undergoing work, expect interruptions
; Message to all users who come from a
host which has a name matching *.edu.

4.4.2 Notice

Command: NOTICE
Parameters: <nickname > <text >

The NOTICE message is used similarly to PRIVMSG. The difference
between NOTICE and PRIVMSG is that automatic replies must never be
sent in response to a NOTICE message. This rule applies to servers
too - they must not send any error reply back to the client on
receipt of a notice. The object of this rule is to avoid loops
between a client automatically sending something in response to
something it received. This is typically used by automatons (clients
with either an AI or other interactive program controlling their
actions) which are always seen to be replying lest they end up in a
loop with another automaton.

See PRIVMSG for more details on replies and examples.

4.5 User based queries

User queries are a group of commands which are primarily concerned
with finding details on a particular user or group users. When using
wildcards with any of these commands, if they match, they will only
return information on users who are ’visible’ to you. The visibility
of a user is determined as a combination of the user’s mode and the
common set of channels you are both on.

4.5.1 Who query

Command: WHO
Parameters: [<name> [<o>]]

The WHO message is used by a client to generate a query which returns

52

Appendix A. RFC 1459: Internet Relay Chat Protocol

a list of information which ’matches’ the <name> parameter given by
the client. In the absence of the <name> parameter, all visible
(users who aren’t invisible (user mode +i) and who don’t have a
common channel with the requesting client) are listed. The same
result can be achieved by using a <name> of "0" or any wildcard which

will end up matching every entry possible.

The <name> passed to WHO is matched against users’ host, server, real
name and nickname if the channel <name> cannot be found.

If the "o" parameter is passed only operators are returned according
to the name mask supplied.

Numeric Replies:

ERR_NOSUCHSERVER
RPL_WHOREPLY RPL_ENDOFWHO

Examples:

WHO *.fi ; List all users who match against
"*.fi".

WHO jto* o ; List all users with a match against
"jto*" if they are an operator.

4.5.2 Whois query

Command: WHOIS
Parameters: [<server >] <nickmask >[, <nickmask >[,...]]

This message is used to query information about particular user. The
server will answer this message with several numeric messages
indicating different statuses of each user which matches the nickmask
(if you are entitled to see them). If no wildcard is present in the
<nickmask >, any information about that nick which you are allowed to
see is presented. A comma (’,’) separated list of nicknames may be
given.

The latter version sends the query to a specific server. It is
useful if you want to know how long the user in question has been
idle as only local server (ie. the server the user is directly
connected to) knows that information, while everything else is
globally known.

Numeric Replies:

ERR_NOSUCHSERVER ERR_NONICKNAMEGIVEN
RPL_WHOISUSER RPL_WHOISCHANNELS
RPL_WHOISCHANNELS RPL_WHOISSERVER
RPL_AWAY RPL_WHOISOPERATOR
RPL_WHOISIDLE ERR_NOSUCHNICK

53

Appendix A. RFC 1459: Internet Relay Chat Protocol

RPL_ENDOFWHOIS

Examples:

WHOIS wiz ; return available user information
about nick WiZ

WHOIS eff.org trillian ; ask server eff.org for user
information about trillian

4.5.3 Whowas

Command: WHOWAS
Parameters: <nickname > [<count > [<server >]]

Whowas asks for information about a nickname which no longer exists.
This may either be due to a nickname change or the user leaving IRC.
In response to this query, the server searches through its nickname
history, looking for any nicks which are lexically the same (no wild
card matching here). The history is searched backward, returning the
most recent entry first. If there are multiple entries, up to
<count > replies will be returned (or all of them if no <count >

parameter is given). If a non-positive number is passed as being
<count >, then a full search is done.

Numeric Replies:

ERR_NONICKNAMEGIVEN ERR_WASNOSUCHNICK
RPL_WHOWASUSER RPL_WHOISSERVER
RPL_ENDOFWHOWAS

Examples:

WHOWAS Wiz ; return all information in the nick
history about nick "WiZ";

WHOWAS Mermaid 9 ; return at most, the 9 most recent
entries in the nick history for
"Mermaid";

WHOWAS Trillian 1 *.edu ; return the most recent history for
"Trillian" from the first server found
to match "*.edu".

4.6 Miscellaneous messages

Messages in this category do not fit into any of the above categories
but are nonetheless still a part of and required by the protocol.

4.6.1 Kill message

Command: KILL
Parameters: <nickname > <comment>

54

Appendix A. RFC 1459: Internet Relay Chat Protocol

The KILL message is used to cause a client-server connection to be
closed by the server which has the actual connection. KILL is used
by servers when they encounter a duplicate entry in the list of valid
nicknames and is used to remove both entries. It is also available
to operators.

Clients which have automatic reconnect algorithms effectively make
this command useless since the disconnection is only brief. It does
however break the flow of data and can be used to stop large amounts
of being abused, any user may elect to receive KILL messages
generated for others to keep an ’eye’ on would be trouble spots.

In an arena where nicknames are required to be globally unique at all
times, KILL messages are sent whenever ’duplicates’ are detected
(that is an attempt to register two users with the same nickname) in
the hope that both of them will disappear and only 1 reappear.

The comment given must reflect the actual reason for the KILL. For
server-generated KILLs it usually is made up of details concerning
the origins of the two conflicting nicknames. For users it is left
up to them to provide an adequate reason to satisfy others who see
it. To prevent/discourage fake KILLs from being generated to hide
the identify of the KILLer, the comment also shows a ’kill-path’
which is updated by each server it passes through, each prepending
its name to the path.

Numeric Replies:

ERR_NOPRIVILEGES ERR_NEEDMOREPARAMS
ERR_NOSUCHNICK ERR_CANTKILLSERVER

KILL David (csd.bu.edu <- tolsun.oulu.fi)
; Nickname collision between csd.bu.edu
and tolson.oulu.fi

NOTE:
It is recommended that only Operators be allowed to kill other users
with KILL message. In an ideal world not even operators would need
to do this and it would be left to servers to deal with.

4.6.2 Ping message

Command: PING
Parameters: <server1 > [<server2 >]

The PING message is used to test the presence of an active client at
the other end of the connection. A PING message is sent at regular
intervals if no other activity detected coming from a connection. If
a connection fails to respond to a PING command within a set amount
of time, that connection is closed.

Any client which receives a PING message must respond to <server1 >

55

Appendix A. RFC 1459: Internet Relay Chat Protocol

(server which sent the PING message out) as quickly as possible with
an appropriate PONG message to indicate it is still there and alive.
Servers should not respond to PING commands but rely on PINGs from
the other end of the connection to indicate the connection is alive.
If the <server2 > parameter is specified, the PING message gets
forwarded there.

Numeric Replies:

ERR_NOORIGIN ERR_NOSUCHSERVER

Examples:

PING tolsun.oulu.fi ; server sending a PING message to
another server to indicate it is still
alive.

PING WiZ ; PING message being sent to nick WiZ

4.6.3 Pong message

Command: PONG
Parameters: <daemon> [<daemon2>]

PONG message is a reply to ping message. If parameter <daemon2> is
given this message must be forwarded to given daemon. The <daemon>

parameter is the name of the daemon who has responded to PING message
and generated this message.

Numeric Replies:

ERR_NOORIGIN ERR_NOSUCHSERVER

Examples:

PONG csd.bu.edu tolsun.oulu.fi ; PONG message from csd.bu.edu to

tolsun.oulu.fi

4.6.4 Error

Command: ERROR
Parameters: <error message >

The ERROR command is for use by servers when reporting a serious or
fatal error to its operators. It may also be sent from one server to
another but must not be accepted from any normal unknown clients.

An ERROR message is for use for reporting errors which occur with a
server-to-server link only. An ERROR message is sent to the server
at the other end (which sends it to all of its connected operators)
and to all operators currently connected. It is not to be passed
onto any other servers by a server if it is received from a server.

56

Appendix A. RFC 1459: Internet Relay Chat Protocol

When a server sends a received ERROR message to its operators, the
message should be encapsulated inside a NOTICE message, indicating
that the client was not responsible for the error.

Numerics:

None.

Examples:

ERROR :Server *.fi already exists; ERROR message to the other server
which caused this error.

NOTICE WiZ :ERROR from csd.bu.edu -- Server *.fi already exists
; Same ERROR message as above but sent
to user WiZ on the other server.

5. OPTIONALS

This section describes OPTIONAL messages. They are not required in a
working server implementation of the protocol described herein. In
the absence of the option, an error reply message must be generated
or an unknown command error. If the message is destined for another
server to answer then it must be passed on (elementary parsing
required) The allocated numerics for this are listed with the
messages below.

5.1 Away

Command: AWAY
Parameters: [message]

With the AWAY message, clients can set an automatic reply string for
any PRIVMSG commands directed at them (not to a channel they are on).
The automatic reply is sent by the server to client sending the
PRIVMSG command. The only replying server is the one to which the
sending client is connected to.

The AWAY message is used either with one parameter (to set an AWAY
message) or with no parameters (to remove the AWAY message).

Numeric Replies:

RPL_UNAWAY RPL_NOWAWAY

Examples:

AWAY :Gone to lunch. Back in 5 ; set away message to "Gone to lunch.
Back in 5".

:WiZ AWAY ; unmark WiZ as being away.

57

Appendix A. RFC 1459: Internet Relay Chat Protocol

5.2 Rehash message

Command: REHASH
Parameters: None

The rehash message can be used by the operator to force the server to
re-read and process its configuration file.

Numeric Replies:

RPL_REHASHING ERR_NOPRIVILEGES

Examples:

REHASH ; message from client with operator
status to server asking it to reread its
configuration file.

5.3 Restart message

Command: RESTART
Parameters: None

The restart message can only be used by an operator to force a server
restart itself. This message is optional since it may be viewed as a
risk to allow arbitrary people to connect to a server as an operator
and execute this command, causing (at least) a disruption to service.

The RESTART command must always be fully processed by the server to
which the sending client is connected and not be passed onto other
connected servers.

Numeric Replies:

ERR_NOPRIVILEGES

Examples:

RESTART ; no parameters required.

5.4 Summon message

Command: SUMMON
Parameters: <user > [<server >]

The SUMMON command can be used to give users who are on a host
running an IRC server a message asking them to please join IRC. This
message is only sent if the target server (a) has SUMMON enabled, (b)
the user is logged in and (c) the server process can write to the
user’s tty (or similar).

If no <server > parameter is given it tries to summon <user > from the
server the client is connected to is assumed as the target.

58

Appendix A. RFC 1459: Internet Relay Chat Protocol

If summon is not enabled in a server, it must return the
ERR_SUMMONDISABLED numeric and pass the summon message onwards.

Numeric Replies:

ERR_NORECIPIENT ERR_FILEERROR
ERR_NOLOGIN ERR_NOSUCHSERVER
RPL_SUMMONING

Examples:

SUMMON jto ; summon user jto on the server’s host

SUMMON jto tolsun.oulu.fi ; summon user jto on the host which a
server named "tolsun.oulu.fi" is
running.

5.5 Users

Command: USERS
Parameters: [<server >]

The USERS command returns a list of users logged into the server in a
similar format to who(1), rusers(1) and finger(1). Some people
may disable this command on their server for security related
reasons. If disabled, the correct numeric must be returned to
indicate this.

Numeric Replies:

ERR_NOSUCHSERVER ERR_FILEERROR
RPL_USERSSTART RPL_USERS
RPL_NOUSERS RPL_ENDOFUSERS
ERR_USERSDISABLED

Disabled Reply:

ERR_USERSDISABLED

Examples:

USERS eff.org ; request a list of users logged in on
server eff.org

:John USERS tolsun.oulu.fi ; request from John for a list of users
logged in on server tolsun.oulu.fi

5.6 Operwall message

Command: WALLOPS
Parameters: Text to be sent to all operators currently online

59

Appendix A. RFC 1459: Internet Relay Chat Protocol

Sends a message to all operators currently online. After
implementing WALLOPS as a user command it was found that it was
often and commonly abused as a means of sending a message to a lot
of people (much similar to WALL). Due to this it is recommended
that the current implementation of WALLOPS be used as an
example by allowing and recognising only servers as the senders of
WALLOPS.

Numeric Replies:

ERR_NEEDMOREPARAMS

Examples:

:csd.bu.edu WALLOPS :Connect ’*.uiuc.edu 6667’ from Joshua; WALLOPS
message from csd.bu.edu announcing a
CONNECT message it received and acted
upon from Joshua.

5.7 Userhost message

Command: USERHOST
Parameters: <nickname >{ <space ><nickname >}

The USERHOST command takes a list of up to 5 nicknames, each
separated by a space character and returns a list of information
about each nickname that it found. The returned list has each reply
separated by a space.

Numeric Replies:

RPL_USERHOST ERR_NEEDMOREPARAMS

Examples:

USERHOST Wiz Michael Marty p ;USERHOST request for information on
nicks "Wiz", "Michael", "Marty" and "p"

5.8 Ison message

Command: ISON
Parameters: <nickname >{ <space ><nickname >}

The ISON command was implemented to provide a quick and efficient
means to get a response about whether a given nickname was currently
on IRC. ISON only takes one (1) parameter: a space-separated list of
nicks. For each nickname in the list that is present, the server
adds that to its reply string. Thus the reply string may return
empty (none of the given nicks are present), an exact copy of the
parameter string (all of them present) or as any other subset of the
set of nicks given in the parameter. The only limit on the number
of nicks that may be checked is that the combined length must not be
too large as to cause the server to chop it off so it fits in 512

60

Appendix A. RFC 1459: Internet Relay Chat Protocol

characters.

ISON is only be processed by the server local to the client sending
the command and thus not passed onto other servers for further
processing.

Numeric Replies:

RPL_ISON ERR_NEEDMOREPARAMS

Examples:

ISON phone trillian WiZ jarlek Avalon Angel Monstah
; Sample ISON request for 7 nicks.

6. REPLIES

The following is a list of numeric replies which are generated in
response to the commands given above. Each numeric is given with its
number, name and reply string.

6.1 Error Replies.

401 ERR_NOSUCHNICK
" <nickname > :No such nick/channel"

- Used to indicate the nickname parameter supplied to a
command is currently unused.

402 ERR_NOSUCHSERVER
" <server name > :No such server"

- Used to indicate the server name given currently
doesn’t exist.

403 ERR_NOSUCHCHANNEL
" <channel name > :No such channel"

- Used to indicate the given channel name is invalid.

404 ERR_CANNOTSENDTOCHAN
" <channel name > :Cannot send to channel"

- Sent to a user who is either (a) not on a channel
which is mode +n or (b) not a chanop (or mode +v) on
a channel which has mode +m set and is trying to send
a PRIVMSG message to that channel.

405 ERR_TOOMANYCHANNELS
" <channel name > :You have joined too many \

channels"
- Sent to a user when they have joined the maximum

number of allowed channels and they try to join

61

Appendix A. RFC 1459: Internet Relay Chat Protocol

another channel.

406 ERR_WASNOSUCHNICK
" <nickname > :There was no such nickname"

- Returned by WHOWAS to indicate there is no history
information for that nickname.

407 ERR_TOOMANYTARGETS
" <target > :Duplicate recipients. No message \

delivered"

- Returned to a client which is attempting to send a
PRIVMSG/NOTICE using the user@host destination format
and for a user@host which has several occurrences.

409 ERR_NOORIGIN
":No origin specified"

- PING or PONG message missing the originator parameter
which is required since these commands must work
without valid prefixes.

411 ERR_NORECIPIENT
":No recipient given (<command>)"

412 ERR_NOTEXTTOSEND
":No text to send"

413 ERR_NOTOPLEVEL
" <mask> :No toplevel domain specified"

414 ERR_WILDTOPLEVEL
" <mask> :Wildcard in toplevel domain"

- 412 - 414 are returned by PRIVMSG to indicate that
the message wasn’t delivered for some reason.
ERR_NOTOPLEVEL and ERR_WILDTOPLEVEL are errors that
are returned when an invalid use of
"PRIVMSG $<server >" or "PRIVMSG # <host >" is attempted.

421 ERR_UNKNOWNCOMMAND
" <command> :Unknown command"

- Returned to a registered client to indicate that the
command sent is unknown by the server.

422 ERR_NOMOTD
":MOTD File is missing"

- Server’s MOTD file could not be opened by the server.

423 ERR_NOADMININFO
" <server > :No administrative info available"

62

Appendix A. RFC 1459: Internet Relay Chat Protocol

- Returned by a server in response to an ADMIN message
when there is an error in finding the appropriate
information.

424 ERR_FILEERROR
":File error doing <file op > on <file >"

- Generic error message used to report a failed file
operation during the processing of a message.

431 ERR_NONICKNAMEGIVEN
":No nickname given"

- Returned when a nickname parameter expected for a
command and isn’t found.

432 ERR_ERRONEUSNICKNAME
" <nick > :Erroneus nickname"

- Returned after receiving a NICK message which contains
characters which do not fall in the defined set. See
section x.x.x for details on valid nicknames.

433 ERR_NICKNAMEINUSE
" <nick > :Nickname is already in use"

- Returned when a NICK message is processed that results
in an attempt to change to a currently existing
nickname.

436 ERR_NICKCOLLISION
" <nick > :Nickname collision KILL"

- Returned by a server to a client when it detects a
nickname collision (registered of a NICK that
already exists by another server).

441 ERR_USERNOTINCHANNEL
" <nick > <channel > :They aren’t on that channel"

- Returned by the server to indicate that the target
user of the command is not on the given channel.

442 ERR_NOTONCHANNEL
" <channel > :You’re not on that channel"

- Returned by the server whenever a client tries to
perform a channel effecting command for which the
client isn’t a member.

443 ERR_USERONCHANNEL
" <user > <channel > :is already on channel"

63

Appendix A. RFC 1459: Internet Relay Chat Protocol

- Returned when a client tries to invite a user to a
channel they are already on.

444 ERR_NOLOGIN
" <user > :User not logged in"

- Returned by the summon after a SUMMON command for a
user was unable to be performed since they were not
logged in.

445 ERR_SUMMONDISABLED
":SUMMON has been disabled"

- Returned as a response to the SUMMON command. Must be
returned by any server which does not implement it.

446 ERR_USERSDISABLED
":USERS has been disabled"

- Returned as a response to the USERS command. Must be
returned by any server which does not implement it.

451 ERR_NOTREGISTERED
":You have not registered"

- Returned by the server to indicate that the client
must be registered before the server will allow it
to be parsed in detail.

461 ERR_NEEDMOREPARAMS
" <command> :Not enough parameters"

- Returned by the server by numerous commands to
indicate to the client that it didn’t supply enough
parameters.

462 ERR_ALREADYREGISTRED
":You may not reregister"

- Returned by the server to any link which tries to
change part of the registered details (such as
password or user details from second USER message).

463 ERR_NOPERMFORHOST
":Your host isn’t among the privileged"

- Returned to a client which attempts to register with
a server which does not been setup to allow
connections from the host the attempted connection
is tried.

464 ERR_PASSWDMISMATCH
":Password incorrect"

64

Appendix A. RFC 1459: Internet Relay Chat Protocol

- Returned to indicate a failed attempt at registering
a connection for which a password was required and
was either not given or incorrect.

465 ERR_YOUREBANNEDCREEP
":You are banned from this server"

- Returned after an attempt to connect and register
yourself with a server which has been setup to
explicitly deny connections to you.

467 ERR_KEYSET
" <channel > :Channel key already set"

471 ERR_CHANNELISFULL
" <channel > :Cannot join channel (+l)"

472 ERR_UNKNOWNMODE
" <char > :is unknown mode char to me"

473 ERR_INVITEONLYCHAN
" <channel > :Cannot join channel (+i)"

474 ERR_BANNEDFROMCHAN
" <channel > :Cannot join channel (+b)"

475 ERR_BADCHANNELKEY
" <channel > :Cannot join channel (+k)"

481 ERR_NOPRIVILEGES
":Permission Denied- You’re not an IRC operator"

- Any command requiring operator privileges to operate
must return this error to indicate the attempt was
unsuccessful.

482 ERR_CHANOPRIVSNEEDED
" <channel > :You’re not channel operator"

- Any command requiring ’chanop’ privileges (such as
MODE messages) must return this error if the client
making the attempt is not a chanop on the specified
channel.

483 ERR_CANTKILLSERVER
":You cant kill a server!"

- Any attempts to use the KILL command on a server
are to be refused and this error returned directly
to the client.

491 ERR_NOOPERHOST
":No O-lines for your host"

- If a client sends an OPER message and the server has
not been configured to allow connections from the
client’s host as an operator, this error must be
returned.

65

Appendix A. RFC 1459: Internet Relay Chat Protocol

501 ERR_UMODEUNKNOWNFLAG
":Unknown MODE flag"

- Returned by the server to indicate that a MODE
message was sent with a nickname parameter and that
the a mode flag sent was not recognized.

502 ERR_USERSDONTMATCH
":Cant change mode for other users"

- Error sent to any user trying to view or change the
user mode for a user other than themselves.

6.2 Command responses.

300 RPL_NONE
Dummy reply number. Not used.

302 RPL_USERHOST
":[<reply >{ <space ><reply >}]"

- Reply format used by USERHOST to list replies to
the query list. The reply string is composed as
follows:

<reply > ::= <nick >[’*’] ’=’ <’+’|’-’ ><hostname >

The ’*’ indicates whether the client has registered
as an Operator. The ’-’ or ’+’ characters represent
whether the client has set an AWAY message or not
respectively.

303 RPL_ISON
":[<nick > { <space ><nick >}]"

- Reply format used by ISON to list replies to the
query list.

301 RPL_AWAY
" <nick > : <away message >"

305 RPL_UNAWAY
":You are no longer marked as being away"

306 RPL_NOWAWAY
":You have been marked as being away"

- These replies are used with the AWAY command (if
allowed). RPL_AWAY is sent to any client sending a
PRIVMSG to a client which is away. RPL_AWAY is only
sent by the server to which the client is connected.
Replies RPL_UNAWAY and RPL_NOWAWAY are sent when the
client removes and sets an AWAY message.

66

Appendix A. RFC 1459: Internet Relay Chat Protocol

311 RPL_WHOISUSER
" <nick > <user > <host > * : <real name >"

312 RPL_WHOISSERVER
" <nick > <server > : <server info >"

313 RPL_WHOISOPERATOR
" <nick > :is an IRC operator"

317 RPL_WHOISIDLE
" <nick > <integer > :seconds idle"

318 RPL_ENDOFWHOIS
" <nick > :End of /WHOIS list"

319 RPL_WHOISCHANNELS
" <nick > :{[@|+] <channel ><space >}"

- Replies 311 - 313, 317 - 319 are all replies
generated in response to a WHOIS message. Given that
there are enough parameters present, the answering
server must either formulate a reply out of the above
numerics (if the query nick is found) or return an
error reply. The ’*’ in RPL_WHOISUSER is there as
the literal character and not as a wild card. For
each reply set, only RPL_WHOISCHANNELS may appear
more than once (for long lists of channel names).
The ’@’ and ’+’ characters next to the channel name
indicate whether a client is a channel operator or
has been granted permission to speak on a moderated
channel. The RPL_ENDOFWHOIS reply is used to mark
the end of processing a WHOIS message.

314 RPL_WHOWASUSER
" <nick > <user > <host > * : <real name >"

369 RPL_ENDOFWHOWAS
" <nick > :End of WHOWAS"

- When replying to a WHOWAS message, a server must use
the replies RPL_WHOWASUSER, RPL_WHOISSERVER or
ERR_WASNOSUCHNICK for each nickname in the presented

list. At the end of all reply batches, there must
be RPL_ENDOFWHOWAS (even if there was only one reply
and it was an error).

321 RPL_LISTSTART
"Channel :Users Name"

322 RPL_LIST
" <channel > <# visible > : <topic >"

323 RPL_LISTEND
":End of /LIST"

- Replies RPL_LISTSTART, RPL_LIST, RPL_LISTEND mark
the start, actual replies with data and end of the
server’s response to a LIST command. If there are
no channels available to return, only the start

67

Appendix A. RFC 1459: Internet Relay Chat Protocol

and end reply must be sent.

324 RPL_CHANNELMODEIS
" <channel > <mode> <mode params >"

331 RPL_NOTOPIC
" <channel > :No topic is set"

332 RPL_TOPIC
" <channel > : <topic >"

- When sending a TOPIC message to determine the
channel topic, one of two replies is sent. If
the topic is set, RPL_TOPIC is sent back else
RPL_NOTOPIC.

341 RPL_INVITING
" <channel > <nick >"

- Returned by the server to indicate that the
attempted INVITE message was successful and is
being passed onto the end client.

342 RPL_SUMMONING
" <user > :Summoning user to IRC"

- Returned by a server answering a SUMMON message to
indicate that it is summoning that user.

351 RPL_VERSION
" <version >. <debuglevel > <server > : <comments >"

- Reply by the server showing its version details.
The <version > is the version of the software being

used (including any patchlevel revisions) and the
<debuglevel > is used to indicate if the server is
running in "debug mode".

The "comments" field may contain any comments about
the version or further version details.

352 RPL_WHOREPLY
" <channel > <user > <host > <server > <nick > \
<H|G>[*][@|+] : <hopcount > <real name >"

315 RPL_ENDOFWHO
" <name> :End of /WHO list"

- The RPL_WHOREPLY and RPL_ENDOFWHO pair are used
to answer a WHO message. The RPL_WHOREPLY is only
sent if there is an appropriate match to the WHO
query. If there is a list of parameters supplied
with a WHO message, a RPL_ENDOFWHO must be sent
after processing each list item with <name> being

68

Appendix A. RFC 1459: Internet Relay Chat Protocol

the item.

353 RPL_NAMREPLY
" <channel > :[[@|+] <nick > [[@|+] <nick > [...]]]"

366 RPL_ENDOFNAMES
" <channel > :End of /NAMES list"

- To reply to a NAMES message, a reply pair consisting
of RPL_NAMREPLY and RPL_ENDOFNAMES is sent by the
server back to the client. If there is no channel
found as in the query, then only RPL_ENDOFNAMES is
returned. The exception to this is when a NAMES
message is sent with no parameters and all visible
channels and contents are sent back in a series of
RPL_NAMEREPLY messages with a RPL_ENDOFNAMES to mark
the end.

364 RPL_LINKS
" <mask> <server > : <hopcount > <server info >"

365 RPL_ENDOFLINKS
" <mask> :End of /LINKS list"

- In replying to the LINKS message, a server must send
replies back using the RPL_LINKS numeric and mark the
end of the list using an RPL_ENDOFLINKS reply.

367 RPL_BANLIST
" <channel > <banid >"

368 RPL_ENDOFBANLIST

" <channel > :End of channel ban list"

- When listing the active ’bans’ for a given channel,
a server is required to send the list back using the
RPL_BANLIST and RPL_ENDOFBANLIST messages. A separate
RPL_BANLIST is sent for each active banid. After the
banids have been listed (or if none present) a
RPL_ENDOFBANLIST must be sent.

371 RPL_INFO
": <string >"

374 RPL_ENDOFINFO
":End of /INFO list"

- A server responding to an INFO message is required to
send all its ’info’ in a series of RPL_INFO messages
with a RPL_ENDOFINFO reply to indicate the end of the
replies.

375 RPL_MOTDSTART
":- <server > Message of the day - "

372 RPL_MOTD
":- <text >"

69

Appendix A. RFC 1459: Internet Relay Chat Protocol

376 RPL_ENDOFMOTD
":End of /MOTD command"

- When responding to the MOTD message and the MOTD file
is found, the file is displayed line by line, with
each line no longer than 80 characters, using
RPL_MOTD format replies. These should be surrounded
by a RPL_MOTDSTART (before the RPL_MOTDs) and an
RPL_ENDOFMOTD (after).

381 RPL_YOUREOPER
":You are now an IRC operator"

- RPL_YOUREOPER is sent back to a client which has
just successfully issued an OPER message and gained
operator status.

382 RPL_REHASHING
" <config file > :Rehashing"

- If the REHASH option is used and an operator sends
a REHASH message, an RPL_REHASHING is sent back to
the operator.

391 RPL_TIME

" <server > : <string showing server’s local time >"

- When replying to the TIME message, a server must send
the reply using the RPL_TIME format above. The string
showing the time need only contain the correct day and
time there. There is no further requirement for the
time string.

392 RPL_USERSSTART
":UserID Terminal Host"

393 RPL_USERS
":%-8s %-9s %-8s"

394 RPL_ENDOFUSERS
":End of users"

395 RPL_NOUSERS
":Nobody logged in"

- If the USERS message is handled by a server, the
replies RPL_USERSTART, RPL_USERS, RPL_ENDOFUSERS and
RPL_NOUSERS are used. RPL_USERSSTART must be sent
first, following by either a sequence of RPL_USERS
or a single RPL_NOUSER. Following this is
RPL_ENDOFUSERS.

200 RPL_TRACELINK
"Link <version & debug level > <destination > \
<next server >"

70

Appendix A. RFC 1459: Internet Relay Chat Protocol

201 RPL_TRACECONNECTING
"Try. <class > <server >"

202 RPL_TRACEHANDSHAKE
"H.S. <class > <server >"

203 RPL_TRACEUNKNOWN
"???? <class > [<client IP address in dot form >]"

204 RPL_TRACEOPERATOR
"Oper <class > <nick >"

205 RPL_TRACEUSER
"User <class > <nick >"

206 RPL_TRACESERVER
"Serv <class > <int >S <int >C <server > \
<nick!user|*!* >@<host|server >"

208 RPL_TRACENEWTYPE
" <newtype > 0 <client name >"

261 RPL_TRACELOG
"File <logfile > <debug level >"

- The RPL_TRACE* are all returned by the server in
response to the TRACE message. How many are
returned is dependent on the the TRACE message and

whether it was sent by an operator or not. There
is no predefined order for which occurs first.
Replies RPL_TRACEUNKNOWN, RPL_TRACECONNECTING and
RPL_TRACEHANDSHAKE are all used for connections
which have not been fully established and are either
unknown, still attempting to connect or in the
process of completing the ’server handshake’.
RPL_TRACELINK is sent by any server which handles
a TRACE message and has to pass it on to another
server. The list of RPL_TRACELINKs sent in
response to a TRACE command traversing the IRC
network should reflect the actual connectivity of
the servers themselves along that path.
RPL_TRACENEWTYPE is to be used for any connection
which does not fit in the other categories but is
being displayed anyway.

211 RPL_STATSLINKINFO
" <linkname > <sendq > <sent messages > \
<sent bytes > <received messages > \
<received bytes > <time open >"

212 RPL_STATSCOMMANDS
" <command> <count >"

213 RPL_STATSCLINE
"C <host > * <name> <port > <class >"

214 RPL_STATSNLINE
"N <host > * <name> <port > <class >"

215 RPL_STATSILINE
"I <host > * <host > <port > <class >"

216 RPL_STATSKLINE
"K <host > * <username > <port > <class >"

71

Appendix A. RFC 1459: Internet Relay Chat Protocol

218 RPL_STATSYLINE
"Y <class > <ping frequency > <connect \

frequency > <max sendq >"
219 RPL_ENDOFSTATS

" <stats letter > :End of /STATS report"
241 RPL_STATSLLINE

"L <hostmask > * <servername > <maxdepth >"
242 RPL_STATSUPTIME

":Server Up %d days %d:%02d:%02d"
243 RPL_STATSOLINE

"O <hostmask > * <name>"
244 RPL_STATSHLINE

"H <hostmask > * <servername >"

221 RPL_UMODEIS
" <user mode string >"

- To answer a query about a client’s own mode,
RPL_UMODEIS is sent back.

251 RPL_LUSERCLIENT
":There are <integer > users and <integer > \

invisible on <integer > servers"
252 RPL_LUSEROP

" <integer > :operator(s) online"
253 RPL_LUSERUNKNOWN

" <integer > :unknown connection(s)"
254 RPL_LUSERCHANNELS

" <integer > :channels formed"
255 RPL_LUSERME

":I have <integer > clients and <integer > \
servers"

- In processing an LUSERS message, the server
sends a set of replies from RPL_LUSERCLIENT,
RPL_LUSEROP, RPL_USERUNKNOWN,
RPL_LUSERCHANNELS and RPL_LUSERME. When
replying, a server must send back
RPL_LUSERCLIENT and RPL_LUSERME. The other
replies are only sent back if a non-zero count
is found for them.

256 RPL_ADMINME
" <server > :Administrative info"

257 RPL_ADMINLOC1
": <admin info >"

258 RPL_ADMINLOC2
": <admin info >"

259 RPL_ADMINEMAIL
": <admin info >"

- When replying to an ADMIN message, a server
is expected to use replies RLP_ADMINME

72

Appendix A. RFC 1459: Internet Relay Chat Protocol

through to RPL_ADMINEMAIL and provide a text
message with each. For RPL_ADMINLOC1 a
description of what city, state and country
the server is in is expected, followed by
details of the university and department
(RPL_ADMINLOC2) and finally the administrative
contact for the server (an email address here
is required) in RPL_ADMINEMAIL.

6.3 Reserved numerics.

These numerics are not described above since they fall into one of
the following categories:

1. no longer in use;

2. reserved for future planned use;

3. in current use but are part of a non-generic ’feature’ of
the current IRC server.

209 RPL_TRACECLASS 217 RPL_STATSQLINE
231 RPL_SERVICEINFO 232 RPL_ENDOFSERVICES
233 RPL_SERVICE 234 RPL_SERVLIST
235 RPL_SERVLISTEND
316 RPL_WHOISCHANOP 361 RPL_KILLDONE
362 RPL_CLOSING 363 RPL_CLOSEEND
373 RPL_INFOSTART 384 RPL_MYPORTIS
466 ERR_YOUWILLBEBANNED 476 ERR_BADCHANMASK
492 ERR_NOSERVICEHOST

7. Client and server authentication

Clients and servers are both subject to the same level of
authentication. For both, an IP number to hostname lookup (and
reverse check on this) is performed for all connections made to the
server. Both connections are then subject to a password check (if
there is a password set for that connection). These checks are
possible on all connections although the password check is only
commonly used with servers.

An additional check that is becoming of more and more common is that
of the username responsible for making the connection. Finding the
username of the other end of the connection typically involves
connecting to an authentication server such as IDENT as described in
RFC 1413.

Given that without passwords it is not easy to reliably determine who
is on the other end of a network connection, use of passwords is
strongly recommended on inter-server connections in addition to any
other measures such as using an ident server.

8. Current implementations

73

Appendix A. RFC 1459: Internet Relay Chat Protocol

The only current implementation of this protocol is the IRC server,
version 2.8. Earlier versions may implement some or all of the
commands described by this document with NOTICE messages replacing

many of the numeric replies. Unfortunately, due to backward
compatibility requirements, the implementation of some parts of this
document varies with what is laid out. On notable difference is:

* recognition that any LF or CR anywhere in a message marks the
end of that message (instead of requiring CR-LF);

The rest of this section deals with issues that are mostly of
importance to those who wish to implement a server but some parts
also apply directly to clients as well.

8.1 Network protocol: TCP - why it is best used here.

IRC has been implemented on top of TCP since TCP supplies a reliable
network protocol which is well suited to this scale of conferencing.
The use of multicast IP is an alternative, but it is not widely
available or supported at the present time.

8.1.1 Support of Unix sockets

Given that Unix domain sockets allow listen/connect operations, the
current implementation can be configured to listen and accept both
client and server connections on a Unix domain socket. These are
recognized as sockets where the hostname starts with a ’/’.

When providing any information about the connections on a Unix domain
socket, the server is required to supplant the actual hostname in
place of the pathname unless the actual socket name is being asked
for.

8.2 Command Parsing

To provide useful ’non-buffered’ network IO for clients and servers,
each connection is given its own private ’input buffer’ in which the
results of the most recent read and parsing are kept. A buffer size
of 512 bytes is used so as to hold 1 full message, although, this
will usually hold several commands. The private buffer is parsed
after every read operation for valid messages. When dealing with
multiple messages from one client in the buffer, care should be taken
in case one happens to cause the client to be ’removed’.

8.3 Message delivery

It is common to find network links saturated or hosts to which you
are sending data unable to send data. Although Unix typically
handles this through the TCP window and internal buffers, the server
often has large amounts of data to send (especially when a new
server-server link forms) and the small buffers provided in the

74

Appendix A. RFC 1459: Internet Relay Chat Protocol

kernel are not enough for the outgoing queue. To alleviate this
problem, a "send queue" is used as a FIFO queue for data to be sent.
A typical "send queue" may grow to 200 Kbytes on a large IRC network
with a slow network connection when a new server connects.

When polling its connections, a server will first read and parse all
incoming data, queuing any data to be sent out. When all available
input is processed, the queued data is sent. This reduces the number
of write() system calls and helps TCP make bigger packets.

8.4 Connection ’Liveness’

To detect when a connection has died or become unresponsive, the
server must ping each of its connections that it doesn’t get a
response from in a given amount of time.

If a connection doesn’t respond in time, its connection is closed
using the appropriate procedures. A connection is also dropped if
its sendq grows beyond the maximum allowed, because it is better to
close a slow connection than have a server process block.

8.5 Establishing a server to client connection

Upon connecting to an IRC server, a client is sent the MOTD (if
present) as well as the current user/server count (as per the LUSER
command). The server is also required to give an unambiguous message
to the client which states its name and version as well as any other
introductory messages which may be deemed appropriate.

After dealing with this, the server must then send out the new user’s
nickname and other information as supplied by itself (USER command)
and as the server could discover (from DNS/authentication servers).
The server must send this information out with NICK first followed by
USER.

8.6 Establishing a server-server connection.

The process of establishing of a server-to-server connection is
fraught with danger since there are many possible areas where
problems can occur - the least of which are race conditions.

After a server has received a connection following by a PASS/SERVER
pair which were recognised as being valid, the server should then
reply with its own PASS/SERVER information for that connection as
well as all of the other state information it knows about as
described below.

When the initiating server receives a PASS/SERVER pair, it too then

checks that the server responding is authenticated properly before
accepting the connection to be that server.

75

Appendix A. RFC 1459: Internet Relay Chat Protocol

8.6.1 Server exchange of state information when connecting

The order of state information being exchanged between servers is
essential. The required order is as follows:

* all known other servers;

* all known user information;

* all known channel information.

Information regarding servers is sent via extra SERVER messages, user
information with NICK/USER/MODE/JOIN messages and channels with MODE
messages.

NOTE: channel topics are *NOT* exchanged here because the TOPIC
command overwrites any old topic information, so at best, the two
sides of the connection would exchange topics.

By passing the state information about servers first, any collisions
with servers that already exist occur before nickname collisions due
to a second server introducing a particular nickname. Due to the IRC
network only being able to exist as an acyclic graph, it may be
possible that the network has already reconnected in another
location, the place where the collision occurs indicating where the
net needs to split.

8.7 Terminating server-client connections

When a client connection closes, a QUIT message is generated on
behalf of the client by the server to which the client connected. No
other message is to be generated or used.

8.8 Terminating server-server connections

If a server-server connection is closed, either via a remotely
generated SQUIT or ’natural’ causes, the rest of the connected IRC
network must have its information updated with by the server which
detected the closure. The server then sends a list of SQUITs (one
for each server behind that connection) and a list of QUITs (again,
one for each client behind that connection).

8.9 Tracking nickname changes

All IRC servers are required to keep a history of recent nickname
changes. This is required to allow the server to have a chance of
keeping in touch of things when nick-change race conditions occur
with commands which manipulate them. Commands which must trace nick
changes are:

* KILL (the nick being killed)

* MODE (+/- o,v)

76

Appendix A. RFC 1459: Internet Relay Chat Protocol

* KICK (the nick being kicked)

No other commands are to have nick changes checked for.

In the above cases, the server is required to first check for the
existence of the nickname, then check its history to see who that
nick currently belongs to (if anyone!). This reduces the chances of
race conditions but they can still occur with the server ending up
affecting the wrong client. When performing a change trace for an
above command it is recommended that a time range be given and
entries which are too old ignored.

For a reasonable history, a server should be able to keep previous
nickname for every client it knows about if they all decided to
change. This size is limited by other factors (such as memory, etc).

8.10 Flood control of clients

With a large network of interconnected IRC servers, it is quite easy
for any single client attached to the network to supply a continuous
stream of messages that result in not only flooding the network, but
also degrading the level of service provided to others. Rather than
require every ’victim’ to be provide their own protection, flood
protection was written into the server and is applied to all clients
except services. The current algorithm is as follows:

* check to see if client’s ‘message timer’ is less than
current time (set to be equal if it is);

* read any data present from the client;

* while the timer is less than ten seconds ahead of the current
time, parse any present messages and penalize the client by
2 seconds for each message;

which in essence means that the client may send 1 message every 2

seconds without being adversely affected.

8.11 Non-blocking lookups

In a real-time environment, it is essential that a server process do
as little waiting as possible so that all the clients are serviced
fairly. Obviously this requires non-blocking IO on all network
read/write operations. For normal server connections, this was not
difficult, but there are other support operations that may cause the
server to block (such as disk reads). Where possible, such activity
should be performed with a short timeout.

8.11.1 Hostname (DNS) lookups

Using the standard resolver libraries from Berkeley and others has

77

Appendix A. RFC 1459: Internet Relay Chat Protocol

meant large delays in some cases where replies have timed out. To
avoid this, a separate set of DNS routines were written which were
setup for non-blocking IO operations and then polled from within the
main server IO loop.

8.11.2 Username (Ident) lookups

Although there are numerous ident libraries for use and inclusion
into other programs, these caused problems since they operated in a
synchronous manner and resulted in frequent delays. Again the
solution was to write a set of routines which would cooperate with
the rest of the server and work using non-blocking IO.

8.12 Configuration File

To provide a flexible way of setting up and running the server, it is
recommended that a configuration file be used which contains
instructions to the server on the following:

* which hosts to accept client connections from;

* which hosts to allow to connect as servers;

* which hosts to connect to (both actively and
passively);

* information about where the server is (university,
city/state, company are examples of this);

* who is responsible for the server and an email address
at which they can be contacted;

* hostnames and passwords for clients which wish to be given

access to restricted operator commands.

In specifying hostnames, both domain names and use of the ’dot’
notation (127.0.0.1) should both be accepted. It must be possible to
specify the password to be used/accepted for all outgoing and
incoming connections (although the only outgoing connections are
those to other servers).

The above list is the minimum requirement for any server which wishes
to make a connection with another server. Other items which may be
of use are:

* specifying which servers other server may introduce;

* how deep a server branch is allowed to become;

* hours during which clients may connect.

8.12.1 Allowing clients to connect

78

Appendix A. RFC 1459: Internet Relay Chat Protocol

A server should use some sort of ’access control list’ (either in the
configuration file or elsewhere) that is read at startup and used to
decide what hosts clients may use to connect to it.

Both ’deny’ and ’allow’ should be implemented to provide the required
flexibility for host access control.

8.12.2 Operators

The granting of operator privileges to a disruptive person can have
dire consequences for the well-being of the IRC net in general due to
the powers given to them. Thus, the acquisition of such powers
should not be very easy. The current setup requires two ’passwords’
to be used although one of them is usually easy guessed. Storage of
oper passwords in configuration files is preferable to hard coding
them in and should be stored in a crypted format (ie using crypt(3)
from Unix) to prevent easy theft.

8.12.3 Allowing servers to connect

The interconnection of server is not a trivial matter: a bad
connection can have a large impact on the usefulness of IRC. Thus,
each server should have a list of servers to which it may connect and
which servers may connect to it. Under no circumstances should a
server allow an arbitrary host to connect as a server. In addition
to which servers may and may not connect, the configuration file
should also store the password and other characteristics of that
link.

8.12.4 Administrivia

To provide accurate and valid replies to the ADMIN command (see
section 4.3.7), the server should find the relevant details in the
configuration.

8.13 Channel membership

The current server allows any registered local user to join upto 10
different channels. There is no limit imposed on non-local users so
that the server remains (reasonably) consistant with all others on a
channel membership basis

9. Current problems

There are a number of recognized problems with this protocol, all of
which hope to be solved sometime in the near future during its
rewrite. Currently, work is underway to find working solutions to
these problems.

9.1 Scalability

It is widely recognized that this protocol does not scale

79

Appendix A. RFC 1459: Internet Relay Chat Protocol

sufficiently well when used in a large arena. The main problem comes
from the requirement that all servers know about all other servers
and users and that information regarding them be updated as soon as
it changes. It is also desirable to keep the number of servers low
so that the path length between any two points is kept minimal and
the spanning tree as strongly branched as possible.

9.2 Labels

The current IRC protocol has 3 types of labels: the nickname, the
channel name and the server name. Each of the three types has its
own domain and no duplicates are allowed inside that domain.
Currently, it is possible for users to pick the label for any of the
three, resulting in collisions. It is widely recognized that this
needs reworking, with a plan for unique names for channels and nicks
that don’t collide being desirable as well as a solution allowing a
cyclic tree.

9.2.1 Nicknames

The idea of the nickname on IRC is very convenient for users to use
when talking to each other outside of a channel, but there is only a
finite nickname space and being what they are, its not uncommon for
several people to want to use the same nick. If a nickname is chosen
by two people using this protocol, either one will not succeed or

both will removed by use of KILL (4.6.1).

9.2.2 Channels

The current channel layout requires that all servers know about all
channels, their inhabitants and properties. Besides not scaling
well, the issue of privacy is also a concern. A collision of
channels is treated as an inclusive event (both people who create the
new channel are considered to be members of it) rather than an
exclusive one such as used to solve nickname collisions.

9.2.3 Servers

Although the number of servers is usually small relative to the
number of users and channels, they two currently required to be known
globally, either each one separately or hidden behind a mask.

9.3 Algorithms

In some places within the server code, it has not been possible to
avoid N^2 algorithms such as checking the channel list of a set
of clients.

In current server versions, there are no database consistency checks,
each server assumes that a neighbouring server is correct. This
opens the door to large problems if a connecting server is buggy or
otherwise tries to introduce contradictions to the existing net.

80

Appendix A. RFC 1459: Internet Relay Chat Protocol

Currently, because of the lack of unique internal and global labels,
there are a multitude of race conditions that exist. These race
conditions generally arise from the problem of it taking time for
messages to traverse and effect the IRC network. Even by changing to
unique labels, there are problems with channel-related commands being
disrupted.

10. Current support and availability

Mailing lists for IRC related discussion:
Future protocol: ircd-three-request@eff.org
General discussion: operlist-request@eff.org

Software implemenations
cs.bu.edu:/irc
nic.funet.fi:/pub/irc
coombs.anu.edu.au:/pub/irc

Newsgroup: alt.irc

Security Considerations

Security issues are discussed in sections 4.1, 4.1.1, 4.1.3, 5.5, and
7.

12. Authors’ Addresses

Jarkko Oikarinen
Tuirantie 17 as 9
90500 OULU
FINLAND

Email: jto@tolsun.oulu.fi

Darren Reed
4 Pateman Street
Watsonia, Victoria 3087
Australia

Email: avalon@coombs.anu.edu.au

81

Appendix B. Client-To-Client Protocol

Klaus Zeuge <sojge@Minsk.DoCS.UU.SE >

Troy Rollo <troy@plod.cbme.unsw.oz.au >

Ben Mesander <ben@gnu.ai.mit.edu >

The Client-To-Client Protocol is meant to be used as a way to
1/ in general send structured data (such as graphics,
voice and different font information) between users
clients, and in a more specific case:
2/ place a query to a users client and getting an answer.

BASIC PROTOCOL BETWEEN CLIENTS AND SERVER

Characters between an Internet Relay Chat (IRC) client and server are
8 bit bytes (also known as octets) and can have numeric values from
octal \000 to \377 inclusive (0 to 255 decimal). Some characters are
special:

CHARS ::= ’\000’ .. ’\377’
NUL ::= ’\000’
NL ::= ’\n’
CR ::= ’\r’

Note: ‘\’ followed by three digits is used to denote an octal value in this
paper. ‘\’ followed by an alphabetic character is used to denote a C
language style special character, and ‘..’ denotes a range of characters.

A line sent to a server, or received from a server (here called "low
level messages") consist or zero or more octets (expcept NUL, NL or
CR) with either a NL or CR appended.

L-CHARS ::= ’\001’ .. ’\011’ | ’\013’ | ’\014’ |
’\016’ .. ’\377’

L-LINE ::= L-CHARS* CR LF

Note: The ‘*’ is used here to denote "zero or more of the preceding class of
characters", and the ‘|’ is used to denote alternation.

A NUL is never sent to the server.

LOW LEVEL QUOTING

Even though messages to and from IRC servers cannot contain NUL, NL,
or CR, it still might be desirable to send ANY character (in so called

82

Appendix B. Client-To-Client Protocol

"middle level messages") between clients. In order for this to be
possible, those three characters have to be quoted. Therefore a quote
character is needed. Of course, the quote character itself has to be
quoted too, since it is in-band.

M-QUOTE ::= ’\020’

(Ie a CNTRL/P).

When sending a middle level message, if there is a character in the
set { NUL, NL, CR, M-QUOTE } present in the message, that character is
replaced by a two character sequence according to the following table:

NUL -- > M-QUOTE ’0’
NL -- > M-QUOTE ’n’
CR -- > M-QUOTE ’r’
M-QUOTE --> M-QUOTE M-QUOTE

When receiving a low level message, if there is a M-QUOTE, look at the
next character, and replace those two according to the following table
to get the corresponding middle level message:

M-QUOTE ’0’ -- > NUL
M-QUOTE ’n’ -- > NL
M-QUOTE ’r’ -- > CR
M-QUOTE M-QUOTE --> M-QUOTE

If the character following M-QUOTE is not any of the listed
characters, that is an error, so drop the M-QUOTE character from the
message, optionally warning the user about it. For example, a string
’x’ M-QUOTE ’y’ ’z’ from a server dequotes into ’x ’y’ ’z’.

Before low level quoting, a message to the server (and in the opposite
direction: after low level dequoting, a message from the server) looks
like:

M-LINE ::= CHARS*

TAGGED DATA

To send both extended data and query/reply pairs between clients, an
extended data format is needed. The extended data are sent in the text
part of a middle level message (and after low level quoting, in the
text part of the low level message).

To send extended data inside the middle level message, we need some
way to delimit it. This is done by starting and ending extended data
with a delimiter character, defined as:

X-DELIM ::= ’\001’

83

Appendix B. Client-To-Client Protocol

As both the starting and ending delimiter looks the same, the first
X-DELIM is called the odd delimiter, and the one that follows, the
even delimiter. The next one after that, an odd delimiter, then and
even, and so on.

When data are quoted (and conversely, before being dequoted) any number
of characters of any kind except X-DELIM can be used in the extended
data inside the X-DELIM pair.

X-CHR ::= ’\000’ | ’\002’ .. ’\377’

An extended message is either empty (nothing between the odd and even
delimiter), has one or more non-space characters (any character but
’\040’) or has one or more non-space characters followed by a space
followed by zero or more characters.

X-N-AS ::= ’\000’ | ’\002’ .. ’\037’ | ’\041’ .. ’\377’
SPC ::= ’\040’
X-MSG ::= | X-N-AS+ | X-N-AS+ SPC X-CHR*

Note: Here ‘+’ is used to denote "one or more of the previous class of
characters", and ‘*’ is used to denote "zero or more of the previous
class of characters".

The characters up until the first SPC (or if no SPC, all of the X-MSG)
is called the tag of the extended message. The tag is used to denote
what kind of extended data is used.

The tag can be *any* string of characters, and if it contains
alphabetics, it is case sensitive, so upper and lower case matters.

Extended data is only valid in PRIVMSG and NOTICE commands. If the
extended data is a reply to a query, it is sent in a NOTICE, otherwise
it is sent in a PRIVMSG. Both PRIVMSG and NOTICE to a user and to a
channel may contain extended data.

The text part of a PRIVMSG or NOTICE might contain zero or more
extended messages, intermixed with zero or more chunks of non-extended
data.

CTCP LEVEL QUOTING

In order to be able to send the delimiter X-DELIM inside an extended
data message, it has to be quoted. This introduces another quote
character (which differs from the low level quote character so it
won’t have to be quoted yet again).

X-QUOTE ::= ’\134’

(a back slash - ‘\’).

84

Appendix B. Client-To-Client Protocol

When quoting on the CTCP level, only the actual CTCP message (extended
data, queries, replies) are quoted. This enables users to actually
send X-QUOTE characters at will. The following translations should be
used:

X-DELIM -- > X-QUOTE ’a’
X-QUOTE -- > X-QUOTE X-QUOTE

and when dequoting on the CTCP level, only CTCP messages are dequoted
whereby the following table is used.

X-QUOTE ’a’ -- > X-DELIM
X-QUOTE X-QUOTE --> X-QUOTE

If an X-QUOTE is seen with a character following it other than the
ones above, that is an error and the X-QUOTE character should be
dropped. For example the CTCP-quoted string ’x’ X-QUOTE ’y’ ’z’
becomes after dequoting, the three character string ’x’ ’y’ ’z’.

If a X-DELIM is found outside a CTCP message, the message will contain
the X-DELIM. (This should only happen with the last X-DELIM when there
are an odd number of X-DELIM’s in a middle level message.)

QUOTING EXAMPLES

There are three levels of messages. The highest level (H) is the text
on the user-to-client level. The middle layer (M) is on the level
where CTCP quoting has been applied to the H-level message. The lowest
level (L) is on the client-to-server level, where low level quoting
has been applied to the M-level message.

The following relations are true, with lowQuote(message) being a
function doing the low level quoting, lowDequote(message) the low
level dequoting function, ctcpQuote(message) the CTCP level quoting
function, ctcpDequote(message) the CTCP level dequoting function, and
ctcpExtract(message) the function which removes all CTCP messages from
a message:

L = lowQuote(M)
M = ctcpDequote(L)

M = ctcpQuote(H)
H = ctcpDequote(ctcpExtract(M))

When sending a CTCP message embedded in normal text:

M = ctcpQuote(H1) || ’\001’ || ctcpQuote(X) || ’\001’ || ctcpQuote(H2)

Note: The operator || denotes string concatenation.

Of course, there might be zero or more normal text messages and zero

85

Appendix B. Client-To-Client Protocol

or more CTCP messages mixed.

- --- Example 1 ---

A user (called actor) wanting to send the string:

Hi there!\nHow are you?

to user victim, i.e. a message where the user has entered an inline
newline (how this is done, if at all, differs from client to client),
will result internaly in the client in the command:

PRIVMSG victim :Hi there!\nHow are you? \K?

which will be CTCP quoted into:

PRIVMSG victim :Hi there!\nHow are you? \\K?

which in turn will be low level quoted into:

PRIVMSG victim :Hi there!\020nHow are you? \\K?

and sent to the server after appending a newline at the end.

This will arrive on victim’s side as:

:actor PRIVMSG victim :Hi there!\020nHow are you? \\K?

(where the \\K would look similar to OK in SIS D47 et. al.) which after
low level dequoting becomes:

:actor PRIVMSG victim :Hi there!\nHow are you? \\K?

and after CTCP dequoting:

:actom PRIVMSG victim :Hi there!\nHow are you? \K?

How this is displayed differs from client to client, but it suggested
that a line break should occour between the words "there" and "How".

- --- Example 2 ---

If actor’s client wants to send the string "Emacs wins" this might
become the string "\n\t\big\020\001\000\\:" when being SED-encrypted
[SED is a simple encryption protocol between IRC clients implemented
with CTCP. I don’t have any reference for it -- Ben] using some key,
so the client starts by CTCP-quoting this string into the string
"\n\t\big\020\\a\000\\\\:" and builds the M-level message:

PRIVMSG victim :\001SED \n\t\big\020\\a\000\\\\:\001

which after low level quoting becomes:

86

Appendix B. Client-To-Client Protocol

PRIVMSG victim :\001SED \020n\t\big\020\020\\a\0200\\\\:\001

which will be sent to the server, with a newline tacked on.

On victim’s side, the string:

:actor PRIVMSG victim :\001SED \020n\t\big\020\020\\a\0200\\\\:\001

will be received from the server and low level dequoted into:

:actor PRIVMSG victim :\001SED \n\t\big\020\\a\000\\\\:\001

whereafter the string "\n\t\big\020\\a\000\\\\:" will be extracted
and first CTCP dequoted into "\n\t\big\020\001\000\\:" and then
SED decoded getting back "Emacs wins" when using the same key.

- --- Example 3 ---

If the user actor wants to query the USERINFO of user victim, and is
in the middle of a conversation, the client may decide to tack on
USERINFO request on the end of a normal text message. Let’s say actor
wants to send the textmessage "Say hi to Ron\n\t/actor" and the CTCP
request "USERINFO" to victim:

PRIVMSG victim :Say hi to Ron\n\t/actor

plus:

USERINFO

which after CTCP quoting become:

PRIVMSG victim :Say hi to Ron\n\t/actor

plus:

USERINFO

which gets merged into:

PRIVMSG victim :Say hi to Ron\n\t/actor\001USERINFO\001

and after low level quoting:

PRIVMSG victim :Say hi to Ron\020n\t/actor\001USERINFO\001

and sent off to the server.

On victim’s side, the message:

:actor PRIVMSG victim :Say hi to Ron\020n\t/actor\001USERINFO\001

arrives. This gets low level dequoted into:

87

Appendix B. Client-To-Client Protocol

:actor PRIVMSG victim :Say hi to Ron\n\t/actor\001USERINFO\001

and thereafter split up into:

:actor PRIVMSG victim :Say hi to Ron\n\t/actor

plus:

USERINFO

After CTCP dequoting both, the message:

:actor PRIVMSG victim :Say hi to Ron\n\t/actor

gets displayed, while the CTCP command:

USERINFO

gets replied to. The reply might be:

USERINFO :CS student\n\001test\001

which gets CTCP quoted into:

USERINFO :CS student\n\\atest\\a

and sent in a NOTICE as it is a reply:

NOTICE actor :\001USERINFO :CS student\n\\atest\\a\001

and low level quoted into:

NOTICE actor :\001USERINFO :CS student\020n\\atest\\a\001

after which is it sent to victim’s server.

When arriving on actor’s side, the message:

:victim NOTICE actor :\001USERINFO :CS student\020n\\atest\\a\001

gets low level dequoted into:

:victim NOTICE actor :\001USERINFO :CS student\n\\atest\\a\001

At this point, all CTCP replies get extracted, giving 1 CTCP reply and
no normal NOTICE:

USERINFO :CS student\n\\atest\\a

The remaining reply gets CTCP dequoted into:

USERINFO :CS student\n\001test\001

88

Appendix B. Client-To-Client Protocol

and presumly displayed to user actor.

KNOWN EXTENDED DATA

Extended data passed between clients can be used to pass structured
information between them. Currently known extended data types are:

ACTION - Used to simulate "role playing" on IRC.
DCC - Negotiates file transfers and direct tcp chat

connections between clients.
SED - Used to send encrypted messages between clients.

ACTION
======
This is used by losers on IRC to simulate "role playing" games. An
action message looks like the following:

\001ACTION barfs on the floor.\001

Clients that recieve such a message should format them to indicate the
user who did this is performing an "action". For example, if the user
"actor" sent the above message to the channel "#twilight_zone", other
users clients might display the message as:

[ACTION] actor- >#twilight_zone: barfs on the floor.

Presumably other users on the channel are suitably impressed.

DCC
===
DCC stands for something like "Direct Client Connection". CTCP DCC
extended data messages are used to negotiate file transfers between
clients and to negotiate chat connections over tcp connections between
two clients, with no IRC server involved. Connections between clients
involve protocols other than the usual IRC protocol. Due to this
complexity, a full description of the DCC protocol is included
separately at the end of this document in Appendix A.

SED
===
SED probably stands for something like "Simple Encryption D???". It is
used by clients to exchange encrypted messages between clients. A
message encoded by SED probably looks something like:

\001SED encrypted-text-goes-here\001

Clients which accept such messages should display them in decrypted
form. It would be nice if someone documented this, and included the
encryption scheme in an Appendix B.

89

Appendix B. Client-To-Client Protocol

KNOWN REQUEST/REPLY PAIRS

A request/reply pair is sent between the two clients in two phases.
The first phase is to send the request. This is done with a "privmsg"
command (either to a nick or to a channel -- it doesn’t matter).

The second phase is to send a reply. This is done with a "notice"
command.

The known request/reply pairs are for the following commands.

FINGER - Returns the user’s full name, and idle time.
VERSION - The version and type of the client.
SOURCE - Where to obtain a copy of a client.
USERINFO - A string set by the user (never the client coder)
CLIENTINFO - Dynamic master index of what a client knows.
ERRMSG - Used when an error needs to be replied with.
PING - Used to measure the delay of the IRC network

between clients.
TIME - Gets the local date and time from other clients.

FINGER
======
This is used to get a user’s real name, and perhaps also the idle time
of the user (this usage has been obsoleted by enhancements to the IRC
protocol. The request is in a "privmsg" and looks like

\001FINGER\001

while the reply is in a "notice" and looks like

\001FINGER :#\001

where the # denotes contains information about the users real name,
login name at clientmachine and idle time and is of type X-N-AS.

VERSION
=======
This is used to get information about the name of the other client and
the version of it. The request in a "privmsg" is simply

\001VERSION\001

and the reply

\001VERSION #:#:#\001

where the first # denotes the name of the client, the second # denotes
the version of the client, the third # the enviroment the client is
running in.

90

Appendix B. Client-To-Client Protocol

Using

X-N-CLN ::= ’\000’ .. ’\071’ | ’\073’ .. ’\377’

the client name is a string of type X-N-CLN saying things like "Kiwi"
or "ircII", the version saying things like "5.2" or "2.1.5c", the
enviroment saying things like "GNU Emacs 18.57.19 under SunOS 4.1.1 on
Sun SLC" or "Compiled with gcc -ansi under Ultrix 4.0 on VAX-11/730".

SOURCE

This is used to get information about where to get a copy of the
client. The request in a "privmsg" is simply

\001SOURCE\001

and the reply is zero or more CTCP replies of the form

\001SOURCE #:#:#\001

followed by an end marker

\001SOURCE\001

where the first # is the name of an Internet host where the client can
be gotten from with anonymous FTP the second # a directory names, and
the third # a space separated list of files to be gotten from that
directory.

Using

X-N-SPC ::= ’\000’ .. ’\037’ | ’\041’ .. ’\377’

the name of the FTP site is to be given by name like "cs.bu.edu" or
"funic.funet.fi".

The file name field is a directory specification optionally followed
by one or more file names, delimited by spaces. If only a directory
name is given, all files in that directory should be copied when
retrieving the clients source. If some files are given, only those
files in that directpry should be copied. Note that the spcification
allows for all characters but space in the names, this includes
allowing :. Examples are "pub/emacs/irc/" to get all files in
directory pub/emacs/irc/, the client should be able to first login as
user "ftp" and the give the command "CD pub/emacs/irc/", followed by
the command "mget *". (It of course has to take care of binary and
prompt mode too). Another example is "/pub/irc Kiwi.5.2.el.Z" in which
case a "CD /pub/irc" and "get Kiwi.5.2.el.Z" is what should be done.

USERINFO
========

91

Appendix B. Client-To-Client Protocol

This is used to transmit a string which is settable by the user (and
never should be set by the client). The query is simply

\001USERINFO\001

with the reply

\001USERINFO :#\001

where the # is the value of the string the client’s user has set.

CLIENTINFO
==========
This is for client developers use to make it easier to show other
client hackers what a certain client knows when it comes to CTCP. The
replies should be fairly verbose explaining what CTCP commands are
understood, what arguments are expected of what type, and what replies
might be expected from the client.

The query is the word CLIENTINFO in a "privmsg" optionally followed by
a colon and one or more specifying words delimited by spaces, where
the word CLIENTINFO by itself,

\001CLIENTINFO\001

should be replied to by giving a list of known tags (see above in
section TAGGED DATA). This is only intended to be read by humans.

With one argument, the reply should be a description of how to use
that tag. With two arguments, a description of how to use that
tag’s subcommand. And so on.

ERRMSG
======
This is used as a reply whenever an unknown query is seen. Also, when
used as a query, the reply should echo back the text in the query,
together with an indication that no error has happened. Should the
query form be used, it is

\001ERRMSG #\001

where # is a string containing any character, with the reply

\001ERRMSG # :#\001

where the first # is the same string as in the query and the second #
a short text notifying the user that no error has occurred.

A normal ERRMSG reply which is sent when a corrupted query or some
corrupted extended data is received, looks like

\001ERRMSG # :#\001

92

Appendix B. Client-To-Client Protocol

where the first # is the the failed query or corrupted extended data
and the second # a text explaining what the problem is, like "unknown
query" or "failed decrypting text".

PING
====
Ping is used to measure the time delay between clients on the IRC
network. A ping query is encoded in a privmsg, and has the form:

\001PING timestamp\001

where ‘timestamp’ is the current time encoded in any form the querying
client finds convienent. The replying client sends back an identical
message inside a notice:

\001PING timestamp\001

The querying client can then subtract the recieved timestamp from the
current time to obtain the delay between clients over the IRC network.

TIME
====
Time queries are used to determine what time it is where another
user’s client is running. This can be useful to determine if someone
is probably awake or not, or what timezone they are in. A time query
has the form:

\001TIME\001

On reciept of such a query in a privmsg, clients should reply with a
notice of the form:

\001TIME :human-readable-time-string\001

For example:

\001TIME :Thu Aug 11 22:52:51 1994 CST\001

EXAMPLES

Sending

PRIVMSG victim :\001FINGER\001

might return

:victim NOTICE actor :\001FINGER :Please check my USERINFO
instead :Klaus Zeuge (sojge@mizar) 1 second has passed since
victim gave a command last.\001

93

Appendix B. Client-To-Client Protocol

(this is only one line) or why not

:victim NOTICE actor :\001FINGER :Please check my USERINFO
instead :Klaus Zeuge (sojge@mizar) 427 seconds (7 minutes and
7 seconds) have passed since victim gave a command last.\001

if Klaus Zeuge happens to be lazy? :-)

Sending

PRIVMSG victim :\001CLIENTINFO\001

might return

:victim NOTICE actor :\001CLIENTINFO :You can request help of the
commands CLIENTINFO ERRMSG FINGER USERINFO VERSION by giving
an argument to CLIENTINFO.\001

Sending

PRIVMSG victim :\001CLIENTINFO CLIENTINFO\001

might return

:victim NOTICE actor :\001CLIENTINFO :CLIENTINFO with 0
arguments gives a list of known client query keywords. With 1
argument, a description of the client query keyword is
returned.\001

while sending

PRIVMSG victim :\001clientinfo clientinfo\001

probably will return something like

:victim NOTICE actor :\001ERRMSG clientinfo clientinfo :Query is
unknown\001

as tag "clientinfo" isn’t known.

Sending

PRIVMSG victim :\001CLIENTINFO ERRMSG\001

might return

:victim NOTICE actor :\001CLIENTINFO :ERRMSG is the given answer
on seeing an unknown keyword. When seeing the keyword ERRMSG,
it works like an echo.\001

Sending

PRIVMSG victim :\001USERINFO\001

94

Appendix B. Client-To-Client Protocol

might return the somewhat pathetically long

:victim NOTICE actor :\001USERINFO :I’m studying computer
science in Uppsala, I’m male (somehow, that seems to be an
important matter on IRC:-) and I speak fluent swedish, decent
german, and some english.\001

Sending

PRIVMSG victim :\001VERSION\001

might return:

:victim NOTICE actor :\001VERSION Kiwi:5.2:GNU Emacs
18.57.19 under SunOS 4.1.1 on Sun
SLC:FTP.Lysator.LiU.SE:/pub/emacs Kiwi-5.2.el.Z
Kiwi.README\001

if the client is named Kiwi of version 5.2 and is used under GNU Emacs
18.57.19 running on a Sun SLCwith SunOS 4.1.1. The client claims a
copy of it can be found with anonymous FTP on FTP.Lysator.LiU.SE after
giving the FTP command "cd /pub/emacs/". There, one should get files
Kiwi-5.2.el.Z and Kiwi.README; presumably one of the files tells how to
proceed with building the client after having gotten the files.

**
Appendix A -- A description of the DCC protocol
**

By Troy Rollo (troy@plod.cbme.unsw.oz.au)
Revised by Ben Mesander (ben@gnu.ai.mit.edu)

Troy Rollo, the original implementor of the DCC protocol, said
that the DCC protocol was never designed to be portable to clients
other than IRCII. However, time has shown that DCC is useable in
environments other than IRCII. IRC clients in diverse languages, such
as ksh, elisp, C, and perl have all had DCC implementations.

Why DCC?
========

DCC allows the user to overcome some limitations of the IRC
server network and to have a somewhat more secure chat connection
while still in an IRC-oriented protocol.

DCC uses direct TCP connections between the clients taking
part to carry data. There is no flood control, so packets can be sent
at full speed, and there is no dependance on server links (or load
imposed on them). In addition, since only the initial handshake for
DCC conections is passed through the IRC network, it makes it harder

95

Appendix B. Client-To-Client Protocol

for operators with cracked servers to spy on personal messages.

How?
====

The initial socket for a DCC connection is created
by the side that initiates (Offers) the connection. This socket
should be a TCP socket bound to INADDR_ANY, listening for
connections.

The Initiating client, on creating the socket, should
send its details to the target client using the CTCP command
DCC. This command takes the form:

DCC type argument address port [size]

type - The connection type.
argument - The connectin type dependant argument.
address - The host address of the initiator as an integer.
port - The port or the socket on which the initiator expects

to receive the connection.
size - If the connection type is "SEND" (see below), then size

will indicate the size of the file being offered. Obsolete
IRCII clients do not send this, so be prepared if this is
not present.

The address, port, and size should be sent as ASCII representations of
the decimal integer formed by converting the values to host byte order
and treating them as an unsigned long, unsigned short, and unsigned
long respectively.

Implementations of the DCC protocol should be prepared to
accept further arguments in a CTCP DCC message. There has been some
discussion of adding another argument that would specify the type of
file being transferred - text, binary, and perhaps others if DCC is
implemented on operating systems other than UNIX. If additional
arguments are added to the protocol, they should have semantics such
that clients which ignore them will interoperate with clients that
don’t in a sensible way.

The following DCC connection types are defined:

Type Purpose Argument
CHAT To carry on a semi-secure conversation the string "chat"
SEND To send a file to the recipient the file name

Although the following subcommand is included in the IRCII DCC command,
it does _not_ transmit a DCC request via IRC, and thus is not
discussed in this document:

TALK Establishes a TALK connection

96

Appendix B. Client-To-Client Protocol

Implementation
==============

The CHAT and SEND connection types should not be
accepted automatically as this would create the potential for
terrorism. Instead, they should notify the user that an
offer has been made, and allow the user to accept it.

The recipient should have the opportunity to rename a file
offered with the DCC SEND command prior to retrieving it. It is also
desirable to ensure that the offered file will not overwrite an
existing file.

Older IRCII clients send the entire pathname of the file being
transmitted. This is annoying, and newer clients should simply send
the filename portion of the file being transmitted.

The port number should be scrutinized - if the port number is
in the UNIX reserved port range, the connection should only be
accepted with caution.

If it is not possible in the client implementation language to
handle a 32-bit integer (for instance emacs 18 elisp and ksh 88), then
it is often possible to use the hostname in the originating PRIVMSG.

The following are the steps which should occur in the clients
(this description assumes use of the BSD socket interface on a UNIX
system).

Initiator:
DCC command issued.
Create a socket, bind it to INADDR_ANY, port 0, and
make it passive (a listening socket).
Send the recipient a DCC request via CTCP supplying
the address and port of the socket. (This
is ideally taken from the address of the local
side of the socket which is connected to a
server. This is presumably the interface on
the host which is closest to the rest of
the net, and results in one less routing hop
in the case of gateway nodes).
Continue normally until a connection is received.

On a connection:
Accept the connection.
Close the original passive socket.
Conduct transaction on the new socket.

Acceptor:
CTCP DCC request received.
Record information on the DCC request and notify the user.

At this point, the USER should be able to abort (close) the

97

Appendix B. Client-To-Client Protocol

request, or accept it. The request should be accepted with
a command specifying the sender, type, and argument, or
a subset of these where no ambiguity exists.

If accepted, create a TCP socket.
Connect the new socket to the address and port supplied.
Conduct the transaction over the socket.

Type specific details.
======================

CHAT Data sent across a CHAT connection should be sent line-by-line
without any prefixes or commands. A CHAT connection ends when
one party issues the DCC CLOSE command to their clients, which
causes the socket to be closed and the information on the connection
to be discarded. The terminating character of each line is a
newline character, ’\n’.

FILE Data is sent in packets, rather than dumped in a stream manner.
This allows the DCC SEND connection to survive where an FTP
connection might fail. The size of the packets is up to the
client, and may be set by the user. Smaller packets result
in a higher probability of survival over bad links.
The recipient should acknowledge each packet by transmitting
the total number of bytes received as an unsigned, 4 byte
integer in network byte order. The sender should not continue
to transmit until the recipient has acknowledged all data
already transmitted. Additionally, the sender should not
close the connection until the last byte has been
acknowledged by the recipient.

Older IRCII clients do not send the file size of the file
being transmitted via DCC. For those clients, note that it is
not possible for the recipient to tell if the entire file has
been received - only the sender has that information, although
IRCII does not report it. Users generally verify the transfer
by checking file sizes. Authors of clients are urged to use
the size feature.

Note also that no provision is made for text translation.

The original block size used by IRCII was 1024. Other clients
have adopted this. Note, however, that an implementation should accept
any blocksize. IRCII currently allows a user-settable blocksize.

98

